Hyperkernel: Push-Button
Verification of an OS Kernel

Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,
James Bornholt, Emina Torlak, and Xi Wang

UNIVERSITY of WASHINGTON
PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

The OS Kernel is a critical component

 Essential for application correctness and security

e Kernel bugs can compromise the entire system

(2o J}(aoe J}(Looe]

Your PC ran into a problem and needs to restart. We're just
collecting some error info, and then we'll restart for you. (0%
complete)

If youd like to know more, you can search online later for this error: HAL_INITIALIZATION_FAILED

i

i

 $

<5, !

¢ 3 g =

3 42 1 &2

1}

i
s Al g B i3 G‘:!ii:?f
piai g ae giif]
EERRN R R L
TEHH ¥} zacaazaa:
JHEH I T
yssyyspysec. ' ESMETEES
PRVERRREEESS 1

.
-

——————————

hhhhh

Formal verification: high correctness assurance

* Write a spec of expected behavior
* Prove that implementation matches the spec

_ 1

IronClad cerTiKOS

* Goal: How much can we minimize the proof burden

Formal verification: high correctness assurance

* Write a spec of expected behavior
* Prove that implementation matches the spec

=L
Proof effort: IronClad cerT1KOS
11 person years

* Goal: How much can we minimize the proof burden

Our result: Hyperkernel

 Unix-like OS kernel: based on xv6

* Fully automated verification using the Z3 solver
* Functional correctness of system calls
* Crosscutting properties (e.g., process isolation)

* Limitations:
* Uniprocessor
* Initialization & glue code unverified

Designing Hyperkernel for proof automation

Xv6 Hyperkernel

* Syscall semantics are loop-y and
require writing loop invariants

* Kernel pointers difficult to
reason about

e Cis difficult to model

Designing Hyperkernel for proof automation

Xv6 Hyperkernel

 Syscall semantics are loop-yand ° Finite interface
require writing loop invariants

* Kernel pointers difficult to
reason about

e Cis difficult to model

Designing Hyperkernel for proof automation

Xv6 Hyperkernel

 Syscall semantics are loop-yand ° Finite interface
require writing loop invariants

e Kernel pointers difficult to Separate user/kernel spaces and
reason about use identity mapping for kernel

e Cis difficult to model

Designing Hyperkernel for proof automation

Xv6

* Syscall semantics are loop-y and
require writing loop invariants

* Kernel pointers difficult to
reason about

e Cis difficult to model

Hyperkernel

* Finite interface

 Separate user/kernel spaces and
use identity mapping for kernel

* Verify LLVM intermediate
representation (IR)

Designing Hyperkernel for proof automation

Xv6 Hyperkernel

e Kernel pointers difficult to Separate user/kernel spaces and
reason about use identity mapping for kernel
e Cis difficult to model Verify LLVM intermediate

representation (IR)

Outline

e Verification workflow
* Finite interface design
* Demo

e Evaluation & lessons learned

Outline

e Verification workflow
* Finite interface design
* Demo

e Evaluation & lessons learned

Overview of verification workflow

Syscall Implementation

Overview of verification workflow

State Machine Specification

(pre

Syscall Implementation

Overview of verification workflow

State Machine Specification

(pre

Syscall Implementation

def sys set runnable(old, pid):
pre = old.procs[pid].state == PROC_EMBRYO

new = old.copy()
new.procs|[pid].state = PROC_RUNNABLE

return pre, new

Overview of verification workflow

State Machine Specification

(pre

Syscall Implementation

def sys_set_runnabl-ﬂﬂ!ﬂ! pid):
pre = old.procs[pid].state == PROC_EMBRYO

new = old.copy()
new.procs|[pid].state = PROC_RUNNABLE

return pre, new

Overview of verification workflow

State Machine Specification

(pre

Syscall Implementation

def sys set runnable(old, pid):
pre = old.procs[pid].state == PROC_EMBRYO

new = old.copy()
new.procs|[pid].state = PROC_RUNNABLE

return pre,

Overview of verification workflow

State Machine Specification

def sys set runnable(old, pid):
. pre ‘pr‘e = old.procs[pid].state == PROC_EMBRYO

new = old.copy()
new.procs|[pid].state = PROC_RUNNABLE

return pre, new

Syscall Implementation

Overview of verification workflow

State Machine Specification

(pre

& Q

Syscall Implementation

LLVM

e Q \ Verifier

Overview of verification workflow

State Machine Specification

Bug
. pre

& Q

Syscall Implementation

LLVM

%
g \ Verifier

~

/Counterexample

_ IH /

\

Declarative Specification g
Counterexample

2D

State Machine Specification

Bug
(pre x

Verifier

& Q

Syscall Implementation

LLVM

3 _.:.
IEE proc *proc;
BiE #parent_hvn, *child_hwm;

\

Declarative Specification g
Counterexample

Bug
e sa
e Verifier

& Q

Syscall Implementation

LLVM

3 _.:.
IEE proc *proc;
BiE #parent_hvn, *child_hwm;

Declarative Specification

Cross-cutting properties:

@ * Correctness of reference counters

* Scheduler safety property
* Process Isolation

Declarative Specification Cross-cutting properties .

@ * Correctness of reference counters

* Scheduler safety property
* Process Isolation

For any virtual address in a process p,
if the virtual address maps to a page
the page must be exclusively owned by p.

Declarative Specification Cross-cutting properties.

@ * Correctness of reference counters

* Scheduler safety property
* Process Isolation

For any virtual address in a process p,
if the virtual address maps to a page

the page must be exclusively owned by p.

page, success = page walk(state, pid, va)
isolation = Implies(success,
state.pages[page].owner == pid)

Show: ForAll([pid, va], isolation)

\

Declarative Specification g
Counterexample

2D

State Machine Specification

Bug
(pre *

Verifier

& Q

Syscall Implementation

LLVM

proc(pid t pid, pa_t h\‘_'

PEt proc *proc;
Bid Sparent_hvn, *child_hwm;

j-_llloc_proc(pid. pld, stock, hvm);
)

Declarative Specification

2D

State Machine Specification

(pre

Syscall Implementation

=(Pld_t pid, pn_t pmla, pn_t

,'broc *proc;
| *parent_hvm, *child_hvm;

_ get_proc(current);

stack (saved
ck), get

LLVM

RV

Verifier

& Q

Bug

%

~

ounterexample

‘¢

4 N

Kernel Image

kgi/

Outline

e Verification workflow
* Finite interface design
* Demo

e Evaluation & lessons learned

Verification through symbolic execution

* Goal: Minimize proof burden
* No manual proofs or code annotations

* Symbolic execution
* Fully automated technique, used in bug-finding
* Full functional verification if program is free of loops and state is finite
* Feasible when units of work sufficiently small for solving

* Hyperkernel approach: Finite interface design

Overview of techniques

* Safely push loops into user space
* Explicit resource management

* Decompose complex syscalls

* Validate linked data structures

* Smart SMT encodings

Overview of techniques

 Safely push loops into user space
* Explicit resource management
 Decompose complex syscalls

* Validate linked data structures

* Smart SMT encodings

The sbrk() system call

User space

, vold *sbrk(intptr t 1ncrement)
virtual address space —

brk

The sbrk() system call

User space

, vold *sbrk(intptr t 1ncrement)
virtual address space —

>
& increments the programs data
AN)

& space by increment bytes

increment { brk
h

The sbrk() system call

User space

, vold *sbrk(intptr t 1ncrement)
virtual address space —

>
& increments the programs data

& space by i b
S o y increment bytes
brk

The sbrk() system call

. Userspace void *sbrk(intptr t increment)
virtual address space —
@6 .
\O&“ increments the programs data
L space by increment bytes
brk
0’5&66
\\O
’b
Goal: Redesign sbrk(); ensuring process isolation.

The sbrk() system call: Dealing with loops

vold *sbrk(intptr t increment)

The sbrk() system call: Dealing with loops

vold *sbrk(intptr t increment)

The sbrk() system call: Dealing with loops

vold *sbrk(intptr t increment)

page table root

L

entry

The sbrk() system call: Dealing with loops

vold *sbrk(intptr t increment)

void *sbrk one page ()

page table root

L

entry

The sbrk() system call: Decomposition

page table root

L

entry

vold *sbrk one page ()

The sbrk() system call: Decomposition

PMLA4 table

vold *sbrk one page ()

page directory

page table

L

entry

entry

L™

page directory page table

entry

]

L

entry

-

4K page

The sbrk() system call: Decomposition

alloc pdpt(..)

PMLA4 table

vold *sbrk one page ()

alloc pd(..)

page directory

page table

alloc_pt(m) alloq_frame(m)

L

entry

entry

L™

page directory page table

entry

]

L

entry

-

4K page

The sbrk() system call: Decomposition

void *sbrk one page/() k

{alloc_pdpt (...) J {alloc_pd(...)} {alloc_pt (...)J {alloc_frame (...)J

page directory
PMLA4 table page table page directory page table

L I entry
entry |

entry

4K page

entry [, D
i

The sbrk() system call: Decomposition
int alloc pdpt(int pml4, size t index)
int alloc pd(int pdpt, size t index)
int alloc pt(int pd, size t 1index)

int alloc frame (int pt, size t 1ndex)

The sbrk() system call: Explicit allocation

@

Search for

@ /‘ free page

alloc
T e (]

paget
®

The sbrk() system call: Explicit allocation

* Kernel keeps track of per-page metadata: owner/type
* User space searches for free page; kernel validates

alloc, page#
[e (2

success/fail

The sbrk() system call: Finite Interface

int alloc pdpt(int pml4, size t index, int free pn)

~N

int alloc pd(int pdpt, size t index, int free pn)

int alloc pt(int pd, size t 1ndex, int free pn)

int alloc frame(int pt, size t index, int free pn)

* Any composition of these system calls maintains isolation

For any virtual address in a process p,

if the virtual address maps to a page
the page must be exclusively owned by p.

Implementation

Component Languages
Kernel implementation 7,616 C, assembly
State-machine specification 804 Python
Declarative specification 263 Python
Verifier 2,878 C++, Python

User-space implementation 10,025

C, assembly

Outline

e Verification workflow
* Finite interface design
* Demo

e Evaluation & lessons learned

Demo

* Hyperkernel in action ﬂ

e Catching a low-level bug °
producing a stack trace

7
/
=
—

* Catching a process isolation bug
producing a visualized counterexample

Outline

e Verification workflow
* Finite interface design
* Demo

* Evaluation & lessons learned

What was the development effort?

* Write a state machine specification

* Relate LLVM data structures to (, \
abstract specification state (e

* Write checks for the representation
invariants if needed.

What was the development effort?

* Write a state machine specification

* Relate LLVM data structures to < .
abstract specification state S.«) -

. e

* Write checks for the representation
invariants if needed.

* Adding and verifying a system call usually takes < 1 hour

s the design effective for scalable verification?

* 45 minutes on a single core machine
* 15 minutes on an 8-core Intel i7

* Not sensitive to system parameters (e.g., number of pages)

* Design is effective for scalable verification

Conclusion

* Feasible to verify simple Unix-like OS kernel ‘-F1

PUSH BUTTON
VERIFICATION

e Automatic verification through symbolic execution
* Make interface finite
 Decompose complex system calls to scale verification

* Verifiability as a first-class system design concern

* http://locore.cs.washington.edu/hyperkernel

