REACT: A Framework for Rapid Exploration
of Approximate Computing Techniques

Mark Wyse
James Bornholt

Andre Baixo

Thierry Moreau
Adrian Sampson

Bill Zorn

Luis Ceze Mark Oskin

University of Washington

{wysem, andreolb, moreau, billzorn, bornholt, asampson, luisceze, oskin}®@cs.washington.edu

Abstract

The efficiency—accuracy trade-off of approximate-computing spans
a diverse array of techniques at both the hardware and software
levels. While this diversity is key to the success of approxima-
tion research, it also entails considerable complexity in develop-
ing and validating new approximation techniques. To overcome
this complexity and foster innovation in research, we propose RE-
ACT, a modeling framework that lets researchers rapidly evalu-
ate approximate-computing techniques and captures the efficiency—
accuracy tradeoff created by approximation. We describe the com-
ponents of REACT and explain how our framework models approx-
imation techniques from the diverse taxonomy of existing research.

1. Motivation

Approximate computing promises significant energy efficiency
gains for applications tolerant of relaxed quality guarantees, but
accurately estimating these quality-efficiency trade-offs requires
significant effort for both researchers and practitioners. Rather than
incur the expense of building hardware, researchers exploring new
approximation techniques often spend months modifying detailed
power modeling tools [2] to gain insights into power and energy
savings. Developers looking to exploit approximation opportuni-
ties in their programs are often forced to rewrite their program
or manually insert error injection code to gain insight into program
behavior under relaxed quality guarantees. These burdens constrain
the ability of researchers to validate new approximate computing
techniques in the design stage, and prevent practitioners from easily
adopting approximation in their applications.

We propose REACT, a modeling framework allowing quick and
accurate exploration of the efficiency—accuracy trade-off created by
approximate computing. In this paper, we detail the components of
REACT, discuss validation of those components, and present an
abbreviated taxonomy of existing approximation techniques.

2. Modeling Framework

REACT consists of an application profiler, an energy model, and
a quality model. We implement a custom profiler and linear en-
ergy model, and extend ACCEPT [12], an approximate computing
compiler framework, to perform quality modeling via user-directed
error injection. Profiling and modeling results are aggregated at the
function level, allowing different approximation techniques to be
applied to distinct phases of a program.

2.1 Application Profiling

The application profiler in REACT is implemented as a tool within
Intel’s Pin [7] framework. The profiler observes an x86 instruction
stream, from which we extract memory operations and produce

a load/store instruction set. The profiler groups instructions into
categories for the energy model (see Table 2). Using the instruction
stream, the profiler simulates a tournament-style branch predictor
and multi-level data cache hierarchy. We aggregate profiling data
at the function level, and consider functions to be execution phase
boundaries.

2.2 Energy Modeling

REACT uses a simplified linear energy model to estimate the to-
tal energy consumption of an application’s execution. This model
captures the dynamic cost of architectural and micro-architectural
events and the static cost of architectural structures. The model’s
inputs are the application profile, energy models for approximation
techniques, and the architectural parameters of the system. REACT
uses the model’s outputs—one precise energy total, and one approxi-
mate energy total-to estimate energy savings under approximation.

Precise Baseline The energy model computes the precise base-
line cost using the following linear equations.

Energyphase =
Stazticcompute + Dynamiccam;}ute
—+ Staticmemm«y + Dynamicmemory (1)
Static = Power x CPI x Instructions 2)
Dynamic = Energy o, X Count cent 3)

In these equations, the Power and Energy terms are architecture-
dependent parameters defining the cost of various operations or
structures. CPI is the average cycles per instruction for the target
architecture. The Count terms are properties of the program’s dy-
namic profile (e.g. arithmetic operations and memory accesses).

Equation (1) computes the energy cost of a phase as the sum of
the static and dynamic costs for compute and memory within the
system. The total precise baseline cost is then the sum of Equation
(1) over all phases of application execution.

Fine-Grained Approximations Fine-grained approximation tech-
niques operate at the event level, replacing individual operations
with approximate versions. In REACT, the model for a fine-grained
technique modifies one or more of the architectural parameters of
the baseline system. For example, a model might reduce the energy
consumption of integer arithmetic operations to model approximate
arithmetic instructions. The energy cost of a fine-grained approx-
imation is computed in the same way as the precise baseline cost,
but using the appropriate modified architectural parameters. Multi-
ple orthogonal fine-grained approximations can be aggregated into
a single set of modified parameters.

2015/6/3



Technique Energy Model Category Error Model Description
DRAM Refresh Rate [1, 6] Memorys; Last-Access Dependent Bit Flip
Drowsy Cache [3] Memorys; Read Upset/Write Failure Bit Error

Load Value Approximation [8]
Neural Acceleration [9]
Reduced-Precision FPU [13]
Underdesigned Multiplier [4]
Voltage Overscaling (ALU) [10]
Precision Scaling (ALU) [14]

Memory Access Energy
Computepyys: & Memorypyn
FP Arithmetic Instructions
Int Multiply Instructions

Int Arithmetic Instructions
Int Arithmetic Instructions

Load Value Predictor Model
Per-Invocation Random Error
Narrow Mantissa Floating Point
Per-Invocation Random Error
Random Bit Flips

LSB Zeroing

Table 1. Selected approximation techniques implemented in REACT. “Dyn” indicates that the dynamic energy of the component is affected,

while “St” indicates an effect on the static energy.

Category Description

alusimple Integer +, -, bitwise
alucomplex Integer *, /, sqrt
fpusimple Floating point +, -
fpucomplex Floating point *, /, sqrt

branch.correct
branch.mispredict

Correct branch prediction
Branch mispredictions

11d.hit L1 D-cache access hit
I1d.miss L1 D-cache access miss
other All remaining instructions

Table 2. Application Profile Instruction Categories

Coarse-Grained Approximations Coarse-grained approximation
techniques replace entire application phases with approximate im-
plementations. In REACT, we restrict such phases to functions. Our
energy model for a coarse-grained technique modifies one or more
of the terms on the right-hand side of Equation (1), and adds ad-
ditional cost specific to the coarse-grained technique. To compute
total energy of a coarse-grained phase, we first compute the precise
baseline cost of the phase. Then, each term affected by the coarse-
grained approximation is scaled by a user-specified factor (e.g., for
placing the processor in a low-power mode). We also account for
speedup (or slowdown) afforded by the technique, and prorate the
static costs accordingly. Lastly, we introduce the technique specific
dynamic invocation and static costs. The dynamic invocation cost
is the number of invocations of the region multiplied by a per in-
vocation cost. The static cost is computed in the same manner as
Equation (2).

2.2.1 Energy Model Validation

REACT employs a custom linear energy model to estimate the en-
ergy savings available through approximation. While this focus en-
ables rapid exploration and provides a simple interface, it poten-
tially sacrifices the accuracy attainable using existing energy and
power modeling tools. To minimize inaccuracies, we ground our
model using McPAT [5], a widely used power modeling framework.
We apply linear regression to learn each of the Energy and Power
terms using in Equations (2)—(3). Overall, we observe an average
total energy error of 0.87%, ranging from 0.31% to 1.38%. These
results lead us to conclude that our energy model, which focuses on
first-order concerns, is a reasonable simplification of the reference
model.

2.3 Quality Modeling

REACT performs quality modeling via user-directed error injec-
tion. We extend ACCEPT [12], an approximate computing com-
piler framework, to inject errors at two granularities: at a fine gran-

ularity after each instruction, and at a coarse granularity on the out-
put of functions.

Fine-Grained Error Injection Fine-grained error injection oc-
curs at the instruction level in REACT. As with EnerJ [11], values
are marked as either approximate or precise, with precise being the
implicit default. For instance, the program snippet:

APPROX int a;
int b;

defines an approximate integer variable a and a precise integer vari-
able b. When compiled with ACCEPT, all instructions manipulat-
ing or depending solely on approximate values (e.g., a store to a)
are marked as being approximate and intercepted with a hook to a
user-defined error injection routine. At runtime, that hook invokes
a user defined error routine. All approximate instructions in a given
function are subjected to the same error injection routine, but the
particular routine used may differ across functions.

Coarse-Grained Error Injection ACCEPT has also been modi-
fied to allow coarse-grained error injection at the function level. In
this approach, an injection routine is specified to modify the outputs
of a function, i.e. the live-outs of that function. The user-specified
routine should be representative of the particular approximation
technique it represents, and ACCEPT imposes no restrictions on
the type of error introduced. For instance, when implementing neu-
ral acceleration, a user may choose to evaluate a neural network,
or instead sample a probability distribution that produces a similar
whole-application quality degradation.

3. Taxonomy of Approximations

Table 1 presents a taxonomy of selected approximation techniques,
shows how REACT’s energy model captures their effect, and pro-
vides a high-level description of the error model. For space, we se-
lect only a few techniques found in literature, although our current
taxonomy is much larger and continues to grow. Our energy and
quality models are designed to capture the effect of a wide range of
approximation techniques, including new techniques we may not
have anticipated, to make REACT a useful tool for both researchers
and practitioners. Not shown are different dimensions that the tax-
onomy can be examined from, including determinism, hardware
versus software, computational resource affected, and granularity.

4. Conclusion & Future Work

REACT is a framework enabling accurate and rapid exploration of
the energy-quality trade-off space of approximate computing. We
have implemented REACT, constructed a full taxonomy, and evalu-
ated a few of the techniques on a small number of benchmarks. Our
future work is centered around implementing more approximation
models and evaluating approximation on more benchmarks.

2015/6/3



References

[1] D. Emst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: a low-power
pipeline based on circuit-level timing speculation. In MICRO, 2003.

[2] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture
support for disciplined approximate programming. In International
Conference on Architectural Support for Programming Languages
and Operating Systems, 2012.

[3] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy
caches: simple techniques for reducing leakage power. In ISCA, 2002.

[4] P. Kulkarni, P. Gupta, and M. Ercegovac. Trading accuracy for power
with an underdesigned multiplier architecture. In VLSI Design, 2011.

[51 S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi.
MCcPAT: An integrated power, area, and timing modeling framework
for multicore and manycore architectures. In MICRO, 2009.

[6] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: Sav-
ing refresh-power in mobile devices through critical data partitioning.
In ASPLOS, 2011.

[7] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation. In PLDI, 2005.

[8] J. S. Miguel, M. Badr, and N. E. Jerger. Load value approximation. In
MICRO, 2014.

[9] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh,
L. Ceze, and M. Oskin. SNNAP: Approximate computing on pro-
grammable SoCs via neural acceleration. In HPCA, 2015.

[10] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones.
Scalable stochastic processors. In DATE, 2010. URL
http://portal.acm.org/citation.cfm?id=1871008.

[11] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. Ener]: Approximate data types for safe and general
low-power computation. In PLDI, 2011.

[12] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze, and
M. Oskin. Accept: A programmer-guided compiler framework for
practical approximate computing. Technical Report UW-CSE-15-01-
01, University of Washington, 2015.

[13] J. Y. FE. Tong, D. Nagle, and R. A. Rutenbar. Reducing power by
optimizing the necessary precision/range of floating-point arithmetic.
8(3), 2000.

[14] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and
A. Raghunathan. Quality programmable vector processors for approx-
imate computing. In MICRO, 2013.

2015/6/3



