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Abstract

Program synthesis automatically produces a program that
meets a desired behavioral specification. While synthesis has
seen success in a number of domains, interesting applications
such as approximate computing and hardware synthesis
require more scalability than existing approaches provide.
The current approach in synthesis is to achieve scalability
by decomposing the problem manually. Inspired by recent
success in statistical language models, we propose instead
exploiting existing code, using machine learning to guide the
synthesis search and automatically decompose the problem.

1. The Need for Scalable Synthesis

Program synthesis is the task of automatically producing
a program that meets a desired correctness specification.
Search-based synthesis [, 5, [7, [12, [14} [15]] searches for a
correct program in a space of candidate implementations.
Existing synthesis techniques include brute-force enumera-
tion of the candidate space using dynamic programming [[15]];
random search with heuristics to explore more fruitful candi-
dates [12]; or formulating the synthesis problem in a logic for
an SMT solver to consume [3]]. All of these techniques have
advantages on particular classes of problems [1]], and search-
based synthesis has seen success as a programming model
in a variety of domains, including low-power spatial comput-
ing [9l], bulk-synchronous distributed programming [16], and
cache coherence protocols [15].

But many promising future applications of synthesis are
impeded by the limited scalability of existing techniques:

e Automated synthesis of symbolic execution engines [4]
improves the reliability and reach of those tools, but
existing work requires significant manual intervention
to make the search tractable.

® Our own recent Wor on applying synthesis to approxi-
mate computing [2]] focused on approximations of small,
manually identified kernels, because the synthesizer could
not reason about the entire program.

e Program synthesis could be used to automatically gener-
ate hardware implementations from programs. High-level
synthesis tools [8]] address this problem, but they make
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Figure 1. Distribution of common x86 instructions in a
WebKit binary. mov is by far the most common instruction,
and different instructions on the left have different likely
following instructions on the right.

limited use of program synthesis techniques due to scal-
ability issues, and instead perform macro expansion that
often requires manual intervention.

The state-of-the-art approach to achieving scalable pro-
gram synthesis is to manually decompose the problem and
specialize synthesis to it. For example, sketching [13]] con-
strains the space of candidate solutions with a partial imple-
mentation, which decomposes the synthesis task into smaller
holes to be filled by a synthesizer. Designing a tractable
sketch requires both creativity and understanding of the un-
derlying search. In this paper we canvas potential techniques
to automate problem decomposition for scalable program
synthesis by exploiting machine learning. An automated ap-
proach would make synthesis much easier to apply to new
problem domains such as those above.

2. Exploiting Properties of Programs

‘We highlight the well-known observation [6] that the opera-
tions or instructions in a program tend not to be uniformly
distributed: at a given program location, not each instruction
is equally likely to appear. This is true both because some in-
structions are simply more common than others, and because
instructions often appear in repeated patterns and idioms.
Figure [T] illustrates this effect by analyzing x86 instruc-
tions in a WebKit binary. The left hand side shows the three
most common instructions in the binary, scaled by frequency;
mov accounts for 39% of the instructions in the binary. The
right hand side shows several common instructions in the
binary, and the weight of the edges between the sides show



how frequently an instruction on the right immediately fol-
lows the instruction on the left. For example, 62% of call
instructions (on the left) are followed immediately by a mov
instruction (on the right), and 46% of push instructions are
followed immediately by another push.

This data points to common idioms at the assembly level.
The same patterns can be seen in higher-level languages;
for example, a call to malloc is likely to be followed
by an error-checking conditional, and quite unlikely to be
immediately followed by a free. Similarly, some functions
are much more likely to appear in a program than others:
malloc is much more common than t gamma, even though
both are members of the C standard library.

Today’s program synthesis algorithms generally do not
exploit this rich structure. Stochastic search, as implemented
by Schkufza et al. [[12], is equally likely to mutate an instruc-
tion to any other instruction in the same equivalence class.
One form of solver-based synthesis uses a bag of components
to complete an SSA program [5]], but will consider (or rule
out by deduction) every combination of instructions without
preferring those most likely to succeed. Some existing work
applies simple probabilistic models to enumerative search [3]],
but we believe more rich and general solutions are possible.

3. Decomposing Synthesis with “Big Code”

We propose the use of machine learning models to guide
and inform search-based program synthesis. We are inspired
by the recent success of statistical language models for
code completion [10] and inferring program properties [[L1].
Rather than generating programs from statistical models,
however, we propose augmenting existing program synthesis
techniques with statistical observations from real-world code.

Component-Based Synthesis. |Gulwani et al./s algorithm
for synthesizing loop-free programs is based on a bag of
components that an SMT solver tries to connect together into
a loop-free SSA-form program [5]]. The only requirement for
these components is that they have a logical encoding of their
input-output behavior. Current implementations use low-level
bitvector operations as the bag of components, which limits
their applicability.

Common program idioms are longer than a single instruc-
tion. We propose mining existing code bases for common
idioms, computing symbolic summaries of common code
blocks, and using these summaries as components. Using
larger blocks as components for synthesis will allow the
search to scale to longer programs with more complex behav-
ior. Moreover, using larger components allows for a decom-
posed hierarchical synthesis approach, where the individual
components can be re-synthesized in isolation to find an op-
timal implementation. Such an approach is particularly well
suited to synthesizing hardware, where low-level building
blocks (such as adders) have complex implementations but
simple logical semantics.

Probabilistic Search Heuristics. Statistical models for pro-
grams can also tell us which instructions are likely to follow
other instructions (as in Figure [T). We propose exploiting
statistical language models to guide search-based synthesis.
For example, if the synthesizer is currently exploring a partial
solution in which instruction i is a mov, our language model
can guide the exploration of potential instructions at position
i+ 1. More generally, language models can tell us which
instructions often occur together, so a partial implementation
can guide the search towards more relevant instructions.

Mining Sketches for Structure. Sketch-based synthesis
starts with a partial implementation of the desired program,
where holes indicate missing expressions to be filled in by the
synthesizer [13]]. Current applications of sketching generally
require sketches to be specified manually, expecting program-
mers to determine the problem decomposition. For example,
work on synthesizing symbolic execution engines [4]] required
manual intervention to define a set of templates that could
represent (a subset of) x86 instructions.

We propose mining existing code bases for sketches.
In particular, current synthesis techniques often can only
synthesize loop-free programs with simple control flow. If
existing code bases expose common control-flow idioms, we
can extract the structure of those programs as a sketch, which
can be filled in by an existing sketch-based synthesizer.
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