Chapter 5

MJRTY—A Fast Majority
Vote Algorithm’

Robert S. Boyer and J Strother Moore

Computer Sciences Department
University of Texas at Austin
and
Computational Logic, Inc.
1717 West Sixth Street, Suite 290
Austin, Texas

Abstract

A new algorithm is presented for determining which, if any, of an arbitrary
number of candidates has received a majority of the votes cast in an election.
The number of comparisons required is at most twice the number of votes.
Furthermore, the algorithm uses storage in a way that permits an efficient
use of magnetic tape. A Fortran version of the algorithm is exhibited. The
Fortran code has been proved correct by a mechanical verification system for
Fortran. The system and the proof are discussed.

1The work described here was conducted in the Computer Science Laboratory of SRI
International and suported in part by NASA Contract NAS1-15528, NSF Grant MCS-
7904081, and ONR Contract N00014-75-C-0816 1981. A brief history of this work is given
in the concluding section.

105



106 Robert S. Boyer and J Strother Moore

5.1 Introduction

Reliability may be obtained by redundant computation and voting in critical
hardware systems. What is the best way to determine the majority, if any,
of a multiset of n votes? An obvious algorithm scans the votes in one pass,
keeping a running tally of the votes for each candidate encountered. If the
number of candidates is fixed, then this obvious algorithm can execute in
order n. However, if the number of candidates is not fixed, then the storage
and retrieval of the running tallies may lead to execution time that is worse
than linear in the number of votes—such an algorithm could run in order n2.

If the votes can be simply ordered, an algorithm with order n execution
time can be coded first to find the median using the Rivest-Tarjan algorithm
[7] and then to check whether the median received more than half the votes.
The Rivest-Tarjan algorithm is bounded above by 5.43n — 163 comparisons,
when n > 32.

In this paper we describe an algorithm that requires at most 2n compar-
isons. The algorithm does not require that the votes can be ordered; only
comparisons of equality are performed.

5.2 The Algorithm

Imagine a convention center filled with delegates (i.e., voters) each carrying a
placard proclaiming the name of his candidate. Suppose a floor fight ensues
and delegates of different persuasions begin to knock one another down with
their placards. Suppose that each delegate who knocks down a member of
the opposition is simultaneously knocked down by his opponent. Clearly,
should any candidate field more delegates than all the others combined, that
candidate would win the floor fight and, when the chaos subsided, the only
delegates left standing would be from the majority block. Should no candidate
field a clear majority, the outcome is less clear; at the conclusion of the fight,
delegates in favor of at most one candidate, say, the nominee, would remain
standing—but the nominee might not represent a majority of all the delegates.
Thus, in general, if someone remains standing at the end of such a fight, the
convention chairman is obliged to count the nominee’s placards (including
those held by downed delegates) to determine whether a majority exists.

Thus our algorithm has two parts. The first part pairs off disagreeing
delegates until all remaining delegates agree. We call this the “pairing” phase.
Perhaps nonobviously, pairing can be done with n comparisons. If pairing
leaves any delegates standing then those delegates unanimously favor a single
candidate—the nominee—who must be in the majority if a majority exists.
The second part of the algorithm, called the “counting” phase, determines
whether the nominee received more than half the votes. The counting phase
obviously requires at most n comparisons. The focus of this paper is on the
pairing phase.



MJRTY—A Fast Majority Vote Algorithm 107

Here is a bloodless way the chairman can simulate the pairing phase. He
visits each delegate in turn, keeping in mind a current candidate cand and a
count k, which is initialized to 0. Upon visiting each delegate, the chairman
first determines whether k is 0; if it is, the chairman selects the delegate’s
candidate as the new value of cand and sets k to 1. Otherwise, the chairman
asks the delegate whether his candidate is cand. If so, then k is incremented
by 1. If not, then k is decremented by 1. The chairman then proceeds to
the next delegate. When all the delegates have been processed, cand is in the
majority if a majority exists.

Proof: Suppose there are n delegates. After the chairman visits the i*®
delegate, 1 < ¢ < n, the delegates he has processed can be divided into two
groups: a group of k delegates in favor of cand, and a group of delegates
that can be paired in such a way that paired delegates disagree. From this
invariant we may conclude, after processing all of the delegates, that cand
has a majority, if there is a majority. For suppose there exists an x different
from cand with more than n/2 votes. Since the second group can be paired,
receives at most (n — k)/2 votes from that group. Thus,  must have received
a vote from the first group, contradicting the fact that all votes in the first
group are for cand.

Here is a proof by simple induction on i that the delegates polled may
always be divided into two such groups after the chairman has processed the
first ¢ delegates. After the chairman has processed the first delegate, k and ¢
are both 1: the group of delegates passed has 1 vote for cand. So suppose the
invariant holds after the 5" candidate, and suppose the i delegates processed
so far may be divided into two groups, U and P, with the aforementioned
properties. If after processing the ‘" delegate k is 0, then cand is reset to
the candidate preferred by the i + 15¢ delegate and k is set to 1. But when &
is 0 the invariant tells us that P contains all the first ¢ delegates. Thus the
first ¢ + 1 delegates may be divided into two groups: one containing only the
i+ 15t delegate and one that is P. If after processing the i*" delegate k is not
0, there are two cases: the i + 1°* delegate votes for or against cand. If the
i + 1% delegate votes for cand, k is incremented; the first ¢ + 1 delegates may
be divided into two groups: U plus the ¢ + 15° delegate and P. If the ¢ + 15t
delegate votes against cand, k is decremented; the first i + 1 delegates may
be divided into two groups as follows. Let 5 be any one of the delegates in
U. Let the first group be U minus j, and let the second group be P together
with both j and the ¢ + 15t delegate.

5.3 Examples

Suppose there are three candidates, A, B, and C, and suppose that the delegates
are polled by the chairman in the following order:

AAACCBBCCCBCC.



108 Robert S. Boyer and J Strother Moore

After the chairman has visited the third delegate, candidate A is leading
with 3 votes. In the diagram below we put a vertical bar after the third
delegate to indicate the position of the chairman.

CAND K
AAAICCBBCCCBCC A 3

In processing the next three delegates, the chairman pairs off the three
A votes against three other votes (two for C and one for B). After the sixth
delegate has been visited, k is 0 and the vote of the seventh delegate makes B
the leading candidate.

CAND K
AAACCBBICCCBCC B 1

The next delegate, however, cancels out B’s short-lived ascendancy and
the next two delegates give C the lead by two votes.

CAND K
AAACCBBCCCIBCC C 2

The next delegate diminishes C’s lead by one, but the last two raise it to 3
by the time the pairing phase terminates. The claim is that if any candidate
has a majority, it is C.

Here is a simple example of the final state of the pairing phase on a ballot
in which no candidate has a majority:

CAND K
A AABBBC| C 1

The votes for A and B cancel one another out and C wins the pairing phase by
default. Had the delegates been polled in a different order, A or B might have
won.

5.4 The Fortran Implementation

Suppose the delegates are in an array A of length N. The subroutine MJRTY
shown in Figure 5.1 takes A and N as input and sets BOOLE and CAND to
communicate the results. BOOLE will be set either to . TRUE. or to .FALSE.. If
BOOLE is set to . TRUE., there is one (and only one) majority element in A and
CAND is set to that element. If BOOLE is set to .FALSE., there is no majority
element in A.

Note that the algorithm fetches the elements of A in linear order. Thus,
the algorithm can be used efficiently when the number of votes is so large that
they must be read from magnetic tape. One tape rewind may be necessary
after the first phase.



QQ

50

75
100

Qa0

200
300

MJRTY—A Fast Majority Vote Algorithm 109

SUBROUTINE MJRTY(A, N, BOOLE, CAND)

INTEGER N

INTEGER A

LOGICAL BOOLE

INTEGER CAND

INTEGER I

INTEGER K

DIMENSION A(N)

K=20

THE FOLLOWING DO IMPLEMENTS THE PAIRING PHASE. CAND IS
THE CURRENTLY LEADING CANDIDATE AND K IS THE NUMBER OF
UNPAIRED VOTES FOR CAND.

DO 100 I =1, N

IF ((K .EQ. 0)) GOTO 50

IF ((CAND .EQ. A(I))) GOTD 75

K= (-1

GOTO 100

CAND = A(I)

K=1

GOTO 100

K= (+ 1)

CONTINUE

IF ((K .EQ. 0)) GOTO 300

BOOLE = .TRUE.

IF ((K .GT. (N / 2))) RETURN

WE NOW ENTER THE COUNTING PHASE. BOOLE IS SET TO TRUE
IN ANTICIPATION OF FINDING CAND IN THE MAJORITY. K IS
USED AS THE RUNNING TALLY FOR CAND. WE EXIT AS SOON
AS K EXCEEDS N/2.

K=20

DO 200 I =1, N

IF ((CAND .NE. A(I))) GOTO 200

K=+ 1)

IF ((K .GT. (N / 2))) RETURN
CONTINUE

BOOLE = .FALSE.

RETURN

END

Figure 5.1: Fortran Implementation of the Algorithm



110 Robert S. Boyer and J Strother Moore

In some applications it may be assumed that a majority candidate ex-
ists. For example, in the SIFT aircraft control system [11], where reliability
is achieved with redundant processors and software voting, the failure rate
of the individual processors is sufficiently low to permit the assumption that
on a given flight a majority of the working processors agree on each vote. If
it can be assumed that a majority exists, the counting phase may be elimi-
nated. More importantly, the algorithm can then be implemented to poll the
delegates in real time (rather than store the votes for batch processing).

The Fortran code above contains one minor improvement not mentioned
in the convention floor-fight analogy. After the pairing phase has terminated,
we test k against n/2. If k is greater than n/2, we announce that cand is the
majority candidate without bothering with the counting phase, because we
know there are at least k votes for cand. Indeed, one could make such a test
every time k is incremented in the first loop. This would sometimes allow the
algorithm to avoid making the second pass through the votes. Whether the
running time of the algorithm is improved when such a test is inside the loop
depends upon the distribution of the votes.

We have failed to find a variation of the first phase of the algorithm that
obviates the second phase.

5.5 The Fortran Verification System

The informal proof sketched above may be convincing evidence that the al-
gorithm computes the majority element if one exists. Of more practical im-
portance, however, is whether the Fortran code implements the algorithm
correctly and executes without error on all Fortran processors. There are
many potential sources of error in the code that are completely ignored by
the “proof” above. Is the program really a legal ANSI Fortran program? Does
it violate any of the rules about aliasing and second level definition? Have we
correctly analyzed the flow of control? Have we considered all the possibilities
at run time? For example, ANSI Fortran permits individual elements of an
array to be “undefined” (e.g., uninitialized). In such cases, even the meaning
of an equality test is left unspecified by ANSI. A more obvious run time worry
is that n might be so large that one of the arithmetic operations causes an
overflow. Furthermore, the proofs are very informal. Are they correct? Have
cases been ignored? Have false or unwarranted properties about “unanimity”
and “majority” been assumed?

To permit the reliable verification of many Fortran programs we have im-
plemented a mechanical verification system for Fortran. That system has
been used to verify MJRTY and other subprograms. Before presenting the for-
mal specifications that were verified, we briefly sketch our verification system.

The system handles a subset of both ANSI Fortran 66 [10] and ANSI
Fortran 77 [1]. The subset is described precisely in [4]. Informally stated, the



MJRTY—A Fast Majority Vote Algorithm 111

subset includes all the statements of Fortran 66 except the i/o, DATA, BLOCK
DATA, and EQUIVALENCE statements. Certain restrictions, however, are placed
on some of the remaining statements. For example, we allow only named
COMMON blocks, we prohibit REAL arithmetic because we do not have a machine
independent semantics for floating point operations, and we require that all
arithmetic statements be fully parenthesized to permit straightforward over-
flow analysis. (ANSI permits the compiler to associate A+B+C to either the left
or right. The overflow analysis is different for the two cases. We therefore re-
quire the programmer to write (A+(B+C)) or ((A+B)+C), which, according the
ANSI standard, determines the run time association. We have implemented
this requirement in a simple but conservative way: all arithmetic expressions
must be fully parenthesized. Thus the code for MJRTY contains unnecessary
parentheses, e.g., in K=(X+1). A more elaborate expression grammar could
eliminate the unnecessary parentheses.)

Here, expressed informally, is what we mean when we say that our system
has established the “correctness” of a subprogram:

If a Fortran subprogram is accepted and proved by our system
and the program can be loaded onto a Fortran processor that
meets the ANSI specification of Fortran and certain parameterized
constraints on the accuracy of arithmetic, then any invocation
of the program in an environment satisfying the input condition
of the program will terminate without run time errors and will
produce an environment satisfying the output condition of the
program.

This statement is made more precise in [4].

Our Fortran verifier is a standard Floyd-King-style system [5, 6, 2, 8]
consisting of two parts: a Fortran analyzer (syntax checker and verification
condition generator) and a mechanical theorem-prover. For those readers
unfamiliar with Floyd-King-style verification, we briefly describe our system
below.

Input to the analyzer consists of the Fortran subprogram (function or
subroutine) to be verified, the mathematical specification of the subprogram,
and all the subprograms somehow referenced by the candidate program. Each
referenced subprogram must have been previously verified by the system. A
specification consists of two mathematical formulas, called the “input asser-
tion” and the “output assertion.” The first describes those states in which the
program may be properly invoked. The second describes the states produced
by the program. In addition to the input/output assertions, each loop in the
subprogram must be cut by an inductive assertion—a mathematical formula
describing the machine state each time execution arrives at the indicated point
in the program. All the formulas are written in the formal logical language
described in [3].

The analyzer checks that the program satisfies all our syntactic require-



112 Robert S. Boyer and J Strother Moore

ments and then generates mathematical formulas called “verification condi-
tions.” If these can be proved—i.e., derived symbolically from a certain set
of axioms using certain rules of inference—then, whenever the program is
invoked in an input state satisfying the input assertion it produces a state
satisfying the output assertion.

In general, there is one such formula for each assertion-free path between
any two assertions. The formula for such a path requires proving that, if the
assertion at the beginning of the path is true and one is led down the path
by the tests, then the assertion at the end of the path is true. In addition,
formulas are generated to establish that no array bound errors, overflows, or
other run time errors occur, and that the program terminates. (See [4].)

To permit consideration of arithmetic overflow, our verification system
permits formal talk about the “least inexpressible positive integer” and the
“greatest inexpressible negative integer” on the host Fortran processor. Typi-
cal input assertions for programs must specify the relations between the input
variables and these otherwise unspecified constants. We assume that ANSI
Fortran processors compute the correct results and cause no arithmetic over-
flow on primitive INTEGER arithmetic operations (i.e., +, =, *, /, and **) in
which the inputs and the mathematically defined result are all strictly between
the least and greatest inexpressible integers.?

The second part of the verification system is a mechanical theorem-prover
that attempts to prove the formulas generated by the analyzer. The theorem-
prover, which is described in [3], is entirely responsible for the correctness of
each proof.

5.6 Formal Specification

Below we denote the initial values of the Fortran variables A and N by A and
n respectively. The precise input assertion for MJRTY is that n is a positive
integer, that n + 1 is strictly less than the least inexpressible positive integer,
and that every element of A is defined. The reason n + 1, rather than merely
n, must be expressible is that the ANSI standard permits I to obtain the
value n + 1 immediately before the termination of DO 100 I = 1, N.

The output assertion for MJRTY is

e The final value of BOOLE is .TRUE. or .FALSE. (that is, BOOLE may not
be returned “undefined”).

e The elements of A are not changed.

e If BOOLE is set to .TRUE., then CAND is defined and the number of oc-
currences in A of its final value, cand, is more than n/2. (By “/” we
denote the integer “floor” of the real quotient.)

2In addition, for division we require that the denominator be nonzero.



MJRTY—A Fast Majority Vote Algorithm 113

e If BOOLE is set to .FALSE., then for all x, the number of times z occurs
in A is less than or equal to n/2.

We phrase these requirements in terms of the mathematical function cnt
of four arguments. One may read cnt(x, A,4,j) as “the number of times z
occurs in A from ¢ through j inclusive.” The function cnt is a typical example
of a concept that must be introduced into one’s underlying logical theory to
specify a program. We may define cnt recursively for all ¢ > 0 and j > 0 as
follows:

0 ifj=0Vvj<i
ent(z, A,4,7) =< l4cnt(z,A,4,j—1) if0<jLinz=A())
cnt(x, A,1,5 — 1) otherwise

Our mechanical theorem-prover verifies that there exists a function satisfy-
ing the above equation before the equation is added as a new axiom. Without
such a check, the user of a verification system might inadvertently “overspec-
ify” a concept and permit correctness proofs based on contradictions in the
underlying specification.

We cut the first DO-loop in MJRTY with an invariant at the bottom of
the loop, just before I is incremented and tested against N. In our informal
proof the invariant required that the ¢ delegates processed thus far could be
divided into a unanimous group for cand of size k and a group that could be
paired into disagreeing delegates. Since the algorithm does not explicitly keep
track of any such division of the delegates, we reformulated the invariant in a
slightly weaker fashion. The reformulation is based on the observation that,
if a collection of delegates can be paired in such a way that paired delegates
disagree, then the collection has no majority.®

Here is the actual invariant used:

(1)0<iand 0<k<i<n.
(2) CAND is always defined and has some value cand.

(3) The number of times cand occurs in A from 1 through 7 is at
least k.

(4) The number of times cand occurs in A from 1 through ¢, minus
k, is no greater than (1 — k) /2.

(5) For all z other than cand, the number of times z occurs in A
from 1 through i is no greater than (i — k)/2.

Although conjuncts (1) and (2) were ignored in our informal proof, they
are essential in a careful proof. Conjunct (3) establishes that we have at least
k votes for cand. Let those k delegates constitute the “unanimous group.”
The i — k remaining delegates are the “majority-free group.” Conjunct (4)

3The converse also holds for collections with an even number of members.



114 Robert S. Boyer and J Strother Moore

says that cand does not have a majority in the majority-free group; ignoring
the k votes in the unanimous group, the number of votes for cand thus far
encountered is less than (i — k)/2. Conjunct (5) says that no other candidate
has a majority in the majority-free group. We count the votes for candidates
other than cand over the entire interval processed, rather than just over the
majority-free group, since we do not really know where the majority-free group
is. But we know that the unanimous group contributes nothing to the tally
of a candidate other than cand. (It is easy to see by the construction of
a counterexample that (4) and (5) do not imply (3). Nevertheless, if one
modifies the code so that k is not tested against n/2 before entering the
counting phase, one can omit conjunct (3) of this invariant. That is, unless
the program exits early when k exceeds n/2, a demon within the first loop is
permitted to raise k above the count of cand (within the constraint imposed
by (5)) without causing the algorithm to perform incorrectly. We do not know
how to interpret this lack of constraint.)
As the counting phase is trivial, we shall not discuss it.

5.7 The Formal Proofs

The Fortran analyzer produced 61 verification conditions for MJRTY. Most of
the conjectures established that array bounds are not violated, that arith-
metic operations cause no overflows, and that variables and array elements
are defined when required.

The mechanical theorem-prover proved all 61 conjectures. Most of the
proofs were immediate either from the axioms and definitions in the “basic
Fortran theory” [4] (e.g., the definition of the negative integers in terms of the
Peano numbers), from the definition of cnt (e.g., if z is A(i+1) and i > 0 then
cnt(z, A, 1,9+ 1) is 1 4+ cnt(z, A,1,4)), or from elementary arithmetic lemmas
(e.g., the theorem that for all naturals m and n, n/2 < m iff n < 2m). Several
of the paths to the invariants and to the output assertion required that the
user help the system.

The user of our system can help the system prove a “hard” theorem by
suggesting that it first prove some key lemmas. When the system proves a
theorem for the user, it stores the theorem for use in future proofs. Thus, by
bringing to the theorem-prover’s attention previously unrecognized truths, the
well-trained user of our system can get the theorem-prover to prove formulas
that would otherwise be beyond the system’s competence. The user of our
system, however, does not have to be trusted. The machine—not the human—
is responsible for the validity of the final proof; the user cannot maliciously
or inadvertently cause the system to accept falsehoods, because the system
proves for itself every fact used.

To get all 61 theorems proved, we had to instruct the theorem-prover to
prove five lemmas about cnt. The two most interesting ones were as follows:



MJRTY—A Fast Majority Vote Algorithm 115

e cnt is monotonic: the number of times z occurs from 1 through i is
less than or equal to the number of times it occurs from 1 through j
if 0 < ¢ < j. Without knowing this, the theorem-prover could not
approve our exiting from the counting phase as soon as k exceeds n/2
lest subsequent processing of the remaining delegates decrease k.

e The number of times z occurs from 1 through i (¢ > 0) is no greater
than 4. This ensures that & in the second loop will never exceed i (and
thus incrementing k will never cause an overflow).

These two lemmas are proved by the system with mathematical induction on
the length of the interval scanned.

The other three lemmas we proved were required because of inadequacies
in the theorem-prover itself. For example, when MJRTY exits because k is 0
at the end of the counting phase, the theorem-prover knows that cand has no
majority and that no z other than cand has a majority. It must prove that no
x has a majority. The proof is obvious if one merely asks, “Is z equal to cand
or not?” and considers the two cases. Without an explicit theorem stated by
the user, the theorem-prover failed to consider such a case split. The other
two lemmas were necessary for similar reasons and indicate inadequacies in
our system that we hope to repair in the future.

The entire effort of specifying MJRTY and getting the 61 verification condi-
tions proved required about 20 man hours. Most of the time was spent identi-
fying problems caused by incorrectly written invariants, overcoming inadequa-
cies in the theorem-prover by identifying appropriate lemmas, and struggling
with the still awkward interface to our Fortran verification condition genera-
tor. It requires about 55 minutes of computer time to prove the final list of
66 theorems. The time was measured on a Foonly F2 Computer (about 30
percent as fast as a DEC 2060) running small INTERLISP-10. A total of 42
minutes was required for theorem-proving, 8 minutes for garbage collection,
and 5 minutes for printing out the proofs.

Readers interested in obtaining the system’s complete English description
of its proofs may contact the authors.

5.8 Postscript 1991

In this paper we have described a linear time majority vote algorithm and
discussed the mechanically checked correctness proof of a Fortran implemen-
tation of it. This work has a rather convoluted history which we would here
like to clarify.

The algorithm described here was invented in 1980 while we worked at SRI
International. A colleague at SRI, working on fault tolerance, was trying to
specify some algorithms using the logic supported by “Boyer-Moore Theorem
Prover.” He asked us for an elegant definition within that logic of the notion of



116 Robert S. Boyer and J Strother Moore

the majority element of a list. Our answer to this challenge was the recursive
expression of the algorithm described here.

In late 1980, we wrote a Fortran version of the algorithm and proved
it correct mechanically. In February, 1981, we wrote this paper, describing
that work. In our minds the paper was noteworthy because it simultaneously
announced an interesting new algorithm and offered a mechanically checked
correctness proof. We submitted the paper for publication.

In 1981 we moved to the University of Texas. Jay Misra, a colleague at UT,
heard our presentation of the algorithm to an NSF site-visit team. According
to Misra (private communication, 1990): “I wondered how to generalize [the
algorithm] to detect elements that occur more than n/k times, for all &, k > 2.
I developed algorithm 2 [given in Section 3 of [9]] which is directly inspired by
your algorithm. Also, I showed that this algorithm is optimal [Section 5, op.
cit.]. On a visit to Cornell, I showed all this to David Gries; he was inspired
enough to contribute algorithm 1 [Section 2, op. cit.].” In 1982, Misra and
Gries published their work [9], citing our technical report appropriately as
“submitted for publication.”

However, our paper was repeatedly rejected for publication, largely be-
cause of its emphasis on Fortran and mechanical verification. A rewritten
version emphasizing the algorithm itself was rejected on the grounds that the
work was superceded by the paper of Misra and Gries!

When we were invited to contribute to the Bledsoe festschrift we decided
to use the opportunity to put our original paper into the literature. We still
think of this as a minor landmark in the development of formal verification
and automated reasoning: here for the first time a new algorithm is presented
along with its mechanically checked correctness proof—eleven years after the
work.



MJRTY—A Fast Majority Vote Algorithm 117

References

[1]

2]

3]

[4]

[7]

(8]

[l

[10]

[11]

American National Standards Institute, Inc. (1978): American Na-
tional Standard Programming Language Fortran, ANSI X3.9-1978, 1430
Broadway, New York, N. Y.

R. B. Anderson (1979): Proving Programs Correct. New York: John
Wiley and Sons.

R. S. Boyer and J S. Moore (1979): A Computational Logic. New York:
Academic Press.

R. S. Boyer and J S. Moore (1981): A Verification Condition Genera-
tor for Fortran. In R. S. Boyer and J S. Moore, eds.: The Correctness
Problem in Computer Science. London: Academic Press.

R. W. Floyd (1967): Assigning Meanings to Programs. In: Mathematical
Aspects of Computer Science, Proc. Symp. Appl. Math., 19. Providence,
RI: American Mathematical Society.

J. C. King (1969): A Program Verifier. Ph. D. thesis, Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, PA.

D. E. Knuth (1973): The Art of Computer Programming, Volume 3:
Sorting and Searching. Reading, MA: Addison-Wesley.

Z. Manna (1974): Mathematical Theory of Computation. New York:
McGraw-Hill.

J. Misra and D. Gries (1982): Finding Repeated Elements. Science of
Computer Programming 2, 143-152.

United States of America Standards Institute (1966): USA Standard
Fortran, USAS X3.9-1966, 10 East 40th Street, New York, N. Y.

J. Wensley, et al. (1978): SIFT: Design and Analysis of a Fault Tolerant
Computer for Aircraft Control. Proc. IEEE 66(10), 1240-1255.






