
470272-1732/99/$10.00  1999 IEEE

Hardware verification accounts for

a considerable portion of the costs in the

microprocessor design process. Traditionally,

designers have verified microprocessor designs

using simulation techniques that help find

most design faults. However, simulation never

guarantees the correct operation of the final

product. Some design faults are very difficult

to detect by simulation; they may slip through

the verification process into manufactured

chips, raising costs. We believe that verifica-

tion costs can be reduced by the judicious

application of formal methods, which should

lower the overall costs of design.

Our approach
Formal verification is an alternative to the

simulation process. It mathematically analyzes

the hardware design and verifies that it is func-

tioning correctly. Typically, when a formal ver-

ification process fails because of design faults

in the target hardware, it provides clues that

identify bugs. In fact, hardware designers are

more interested in finding bugs than in veri-

fying their design, and formal verification is a

powerful method for finding the most elusive

bugs. (See the “Simulation vs. formal verifi-

cation’’ sidebar on the next page.)

The key to formal verification of a micro-

processor is the use of completely precise mod-

els. We have used the logic of the ACL21

theorem prover to formally specify abstract

models of the FM9801: a pipelined, super-

scalar microprocessor of our own design. The

use of formal logic for specifying our micro-

processor permits us to formally verify our

design. Since our models are also executable

specifications, we can test the design by sim-

ulation as well.

To investigate our ability to model and ver-

ify a microprocessor, we created a pipelined,

multi-issue design. It includes Tomasulo’s

algorithm, memory-write buffering, load-

bypassing, external and internal exceptions, a

branch prediction mechanism, speculative

execution, and privileged instructions, and

permits the self-modification of program

code. We included these features to ensure

that we had specified a system containing a

number of the features commonly found in

modern microprocessor designs. Using the

ACL2 logic, we specified this design both at a

microarchitectural (MA) level, where all of the

features just mentioned are apparent, and at

the instruction-set (ISA) level, where only the

instruction set is specified. Using the ACL2

theorem-proving system, we mechanically

proved that the MA description implement-

ed the ISA specification.

Using formal techniques as an aid in hard-

ware design is spreading.2-4 The precision of

using formal techniques can improve the

Warren A. Hunt, Jr.
IBM Austin Research

Laboratory

Jun Sawada
University of Texas at

Austin

DESIGNERS USE FORMAL LOGIC AND A THEOREM PROVER TO VERTIFY THAT A

COMPLEX MICROARCHITECTURE ALWAYS EXECUTES ITS INSTRUCTION SET

CORRECTLY.

VERIFYING THE FM9801
MICROARCHITECTURE

design process. Historically, hardware

description languages have been used to spec-

ify hardware designs, but these languages do

not have a formal basis. Various hardware

description languages have been formal-

ized,2,6,7 but without great impact due to the

complexity of the resultant specifications.

Circuits with the complexity of simple micro-

processors3,8 have been given mathematical

specifications, and their designs have been

mechanically proved to implement their spec-

ifications. The construction of these specifi-

cations has limited their usefulness; that is,

these models were often constructed with

only verification in mind. This kind of one-

dimensional approach hampers the transfer

of hardware verification techniques to com-

mercial engineering practice.

The commercial use of formal verification

has, to this point, been limited to the verifi-

cation of properties local to small pieces of a

design. To our best knowledge, the industry

has not verified that a specific microarchitec-

ture implements its ISA specification.

Our approach is to build executable mod-

els, but our resulting models are formal, and

therefore, can be mathematically analyzed as

well as executed. Thus, our models have at

least dual use: as a simulator and as the object

of our formal verification.

Informal machine description
We have specified our microprocessor

design at the MA and ISA levels. Both levels

are specified as executable interpreters, but the

MA specification contains a number of coop-

erating finite-state machines (FSMs) that

implement various processor features such as

the reorder buffer and the different ALUs. The

ISA specification is an abstraction of the

design, only specifying the possible changes

to the programmer visible state, which are

shown as shaded boxes in Figure 1.

The ISA interpreter function takes as argu-

ments the current ISA state and an external

interrupt input, and it returns the program-

mer visible state after executing a single

instruction or responding to an interrupt. All

components shown in Figure 1 are included in

the MA next-state function. This function

takes a current MA state and its external

inputs as arguments, and returns the total state

after one clock cycle. The ISA model is not

pipelined; that is, a complete instruction is

interpreted with each invocation.

Our ISA model specifies the behavior of 11

different instruction classes. The ISA specifi-

48

FM9801 VERIFICATION

IEEE MICRO

Simulation vs. formal verification
The industry often applies the word verification to performance, functional, test, timing,

and so on. Here, we mean that we can exhibit a mathematical proof that some specification
or design has a desired property. For our work, we represented all properties and designs using
the ACL2 logic, and carried out proofs within the ACL2 formal logic using its associated
mechanical theorem prover.

To clarify, consider the following specification: 3x. Imagine that the only “gates’’ available
to a designer are an adder and a storage device. Typically, industrial designs are specified using
a hardware description language such as VHDL, and a designer might record that design as:

latch <- x + x;
output <- latch + x;

assuming that the signal assignments both occur at the same time as some implicit clock.
A designer would typically check that the design in question is correct by trying different

numbers for x in both the specification and the design to see if the same result is computed:
this is simulation. Another way to check that our design implements 3x is to prove their
equality using algebra; this is verification. No cases need be tried, and no “vectors’’ need be
run. Our implementation requires two steps to compute its result, therefore, we would need
to prove that after two steps the variable output does indeed contain 3x. Thus, we need to
prove that (x + x) + x is 3x.

We use formal verification to prove that (x + x) + x does implement 3x for all values of x.
This kind of approach can be much less expensive than testing. Just to ensure that our cir-
cuit design really triples a 64-bit number, we must try all 264 combinations. The number of
test cases often grows geometrically with size of circuit designs.

In a nutshell, a single mathematical proof can provide the confidence provided by an
exhaustive set of functional tests, often at a cost far lower than the cost of exhaustive sim-
ulation. For something as large as a microprocessor, complete functional testing is not an
option because the number of different states is so large that no full testing regimen can be
completed. Note that these proof techniques may be used in different ways, for example, for
architectural and behavioral validation, comparison of implementations with specifications,
and comparison of one implementation with another.

We verified the FM9801 microprocessor in a manner similar to that of our simple example.
The FM9801 is specified with an ISA step function, which returns the state after executing one
instruction or, if there was an interrupt, returns the state after vectoring to the interrupt han-
dler. The complete MA specification of the FM9801 is also defined with a step function, but
in addition to the programmer visible state, all of the additional internal states required for
our specific implementation are present. By repeatedly stepping these specifications, we can
(symbolically) simulate the behavior of both the ISA and the MA over a number of steps.

Each step of our MA specification can be thought of as one “clock tick’’ for a physical imple-
mentation. Our MA specification runs at a different rate than our ISA specification. Its rate is
determined by its design, the speed at which the memory unit responds, and by the quality of
the branch prediction. Because of the different rate at which the design executes instructions
as compared to the ISA execution rate, we are forced to create a rate-mapping function, which
we call a witness function, between the two specifications. Then we compare the MA with the
ISA at certain points. In the case of the FM9801, our proof approach ensures that the program
counter, registers, and memory are identical when the implementation is in a flushed state.

cation also includes actions

for external interrupts and

internal exceptions, as the

changes caused by these

exceptions are visible to the

programmer. When an excep-

tion occurs, the FM9801 ISA

model saves some states in

special registers, changes its

internal state to supervisor

mode, and finally jumps to an

address specific to the excep-

tion type.

The MA specification con-

sists of a number of cooperat-

ing FSMs, including the

exception mechanisms, the

branch prediction unit, and

the memory-write buffers.

This design fetches and com-

mits instructions in program

order, but it can simultane-

ously issue as many as three

instructions to the execution

units. The machine design

can have as many as 15

instructions in flight, and as

many as 12 of these instruc-

tions may be executing spec-

ulatively. Each instruction is first fetched, then

decoded and dispatched to an appropriate

reservation station, to await its operands.

Once the operands of an instruction are avail-

able, the instruction and its operands are

issued to an execution unit, after which the

result is written to the reorder buffer. Instruc-

tions are committed to the memory and reg-

ister file in program order. Speculatively

executed instructions from a mispredicted

execution branch proceed no further than the

reorder buffer.

Our MA design includes four types of

exceptions: fetch errors, decode errors, data

access errors, and external interrupts. The first

three exceptions are generated internally.

Exceptions are handled in a precise manner:

all instructions preceding an exception must

complete their operation, and all partially exe-

cuted instructions following an exception

must be abandoned with no side effects.

Because the synchronization requires com-

pletion of partially executed instructions, a

large number of machine cycles may be

required before our MA design actually starts

exception handling. If multiple exceptions are

detected in the pipeline, only the earliest

exception in program order is processed.

Machine proof requirements
To demonstrate that the MA design cor-

rectly implements its ISA specification, we

prove that the symbolic execution of the MA

always produces the same result in the pro-

grammer visible state. The relationship

between the MA and ISA machines is subtle

because of the different rates at which they

operate. Each step of the ISA specification

completely executes one instruction, where

each step of the MA specification models one

clock cycle of execution that may or may not

retire an instruction while many instructions

may make some progress. The key difference

is the complicated time abstraction between

the two models; the data abstraction is a sim-

ple projection of the programmer visible state

from the MA state.

Several different methods to specify the cor-

49MAY–JUNE 1999

Instruction
fetch
unit

M
em

or
y

Reorder
bufferRegister

file
Dispatch
queue

Decoder

Reservation
stations

Load-store
unit

Integer
unit

Multiply
unit

Branch
unit

Common data bus

PC

Figure 1. Block diagram of our pipeline machine design.

rectness of a pipelined processor have been

proposed. Most methods are a variant of

Burch and Dill’s correctness criterion involv-

ing pipeline flushing.9 Although this criteri-

on with flushing has been extended to cover

superscalar processors,10 it does not address

speculative execution and external exceptions.

For our work, we used the correctness criteri-

on shown in Figure 2.

Our verification criterion states that by

starting the two models in related states, the

programmer visible state changes in the MA

design are exactly related to the programmer

visible state changes in the ISA specification.

The problem in comparing the states of a

pipelined MA and its ISA is the existence of

partially executed instructions. A simple pro-

jection of an arbitrary MA state can produce

an inconsistent ISA state that does not appear

during the corresponding ISA execution.

Instead, we restrict the initial and final states

to a flushed pipeline state; that is, no partial-

ly executed instructions are in those states. We

do not directly compare the intermediate MA

states to the ISA, but these states must be cor-

rectly executing instructions so that the final

result is always correct. In fact, our verifica-

tion process obliges us to verify the correct-

ness of intermediate states by proving

invariant conditions discussed later.

Correctness criterion: For an arbitrary MA

execution sequence from a flushed state

MA0 to another flushed state MAn, there

exists a corresponding ISA execution

sequence from ISA0 to ISAm. This sequence

executes the same instructions as occur in

the MA execution sequence, and satisfy

ISA0 = proj(MA0) and ISAm = proj(MAn).

The proof of this criterion requires us to

show the existence of m, which is the number

of instructions that are executed during the

MA execution from MA0 to MAn. We exhib-

it such m by constructing a witness function.

This function calculates the exact number of

executed instructions, excluding speculative-

ly executed instructions that are abandoned

in the middle of their execution.

Our correctness criterion checks whether

instructions are correctly executed indepen-

dently of how branches are predicted. In a cor-

rectly designed MA, speculatively executed

instructions will have no side effects on the

programmer visible state. Since the ISA spec-

ification exactly characterizes the machine

behavior without speculation, comparison of

the MA execution against its ISA specification

should reveal incorrect side effects from the

invalid speculation.

We want to show that the MA design

implements exceptions correctly, but we also

have to show that the MA implements precise

exceptions. Since the ISA specification exe-

cutes instructions sequentially, it exactly spec-

ifies the nature and order of exceptions. Since

the MA design may execute instructions both

speculatively and in an out-of-order fashion,

it is possible for exceptions to occur that real-

ly do not occur in the program. For instance,

if an exception occurs in a speculatively exe-

cuted instruction, it may be that this instruc-

tion is never actually executed. The MA

design must not process such an exception

until it is known that the exception-causing

instruction will actually be executed.

External exceptions make the problem

more complicated. The ISA interpreter func-

tion takes an external interrupt signal as one

of its arguments, and this specification

describes the action of an external interrupt

in a similar manner to the way it does for

internal exceptions. Unlike internal excep-

tions, however, the ISA specification does not

specify which instruction should be inter-

rupted by an interrupt signal. There can be

multiple correct MA implementations that

interrupt different instructions for the same

interrupt signal. Interference between the

external interrupt, internal exceptions, and

50

FM9801 VERIFICATION

IEEE MICRO

m cycles of
ISA state transition

n cycles of
MA state transition

ISA-stepm

MA-stepn

ISA0

MA0
(flushed
state)

MAn
(flushed
state)

ISAm

Proj Proj

ISA
MA
Proj

Instruction-Set Architecture level
Microarchitectural level
Projection of an MA state

Figure 2. Correctness diagrams.

the speculative execution further complicates

the exception behavior. The sequential exe-

cution by the ISA always defines the ideal MA

behavior, because the MA behavior should

appear to the programmer as if it were a

sequential machine.

The nondeterminism of the ISA step func-

tion introduced by the external signal can lead

to different final ISA states, as shown in Fig-

ure 3. The commutative diagram holds only

for the ISA state transitions, which interrupt

the same instructions as the MA does. Since

supplying different environments to the MA

will cause different instructions to be execut-

ed and interrupted, we need to find the cor-

responding ISA sequence for each MA state

sequence with different input signals. Our

correctness criterion has been expanded to

incorporate this aspect.

An interesting problem in the verification of

pipelined microprocessors is the issue of self-

modifying code. All processors, in some sense,

must permit the self-modification of the pro-

gram code, as just the act of loading a pro-

gram into memory is a modification of the

program memory. During program execution

by our MA, there are a number of instructions

inside the machine at one time.

Consider an instruction that modifies the

next instruction in the program memory. Our

ISA specification will modify the program

memory, and when the ISA specification is

called upon to execute the next instruction, it

will read the modified instruction. Converse-

ly, our MA design executes an instruction over

a number of clock cycles, and there are a num-

ber of instructions in various pipeline stages.

When the MA design reads an instruction, it

takes several clock cycles to finish executing

this instruction; at the same time the MA

design fetches the next instruction before

completing the previously fetched instruction.

In this case, our MA design does not read the

same instruction as the ISA specification.

In the proof of our correctness criterion, we

assume that the sequence of instructions

between flushed states is not modified. Mul-

tiple sequences of this type can be appended,

and our correctness criterion is maintained.

This will be sufficient to guarantee the correct

behavior of self-modifying code with appro-

priate synchronization. For instance, program

code can be loaded by a small program that

does not modify itself and flushes the pipeline

by executing a SYNC instruction. Then, the

loaded program code can be safely executed.

Obviously, our correctness criterion does not

imply that our microprocessor design works

correctly in every environment. For instance,

the liveness of our processor design is not part

of our correctness criterion. It could be sepa-

rately proven that no deadlock will occur in the

pipelined machine. The criterion does specify

that external interrupt signals are processed cor-

rectly, but it does not guarantee that all the

interrupt signals actually interrupt our machine

design. For instance, if there is an interrupt

every clock cycle, the MA cannot process them

all. For a real-time system, we would want to

prove that our processor does respond to an

external interrupt in a bounded amount of time

with appropriate memory responses.

Design invariants
Invariant conditions are the properties that

the machine satisfies in every reachable state.

Invariant properties often realize the designer’s

idea of correct machine behavior. Finding and

verifying invariant conditions was our most dif-

ficult task; we had to manually analyze the

hardware to identify invariant conditions.

Identifying and verifying invariant condi-

tions is a key to our approach. We start by

defining a small set of invariant conditions

that specifies the correct state of the pro-

grammer visible components. We then incre-

mentally strengthen this initial set of

conditions. For instance, while proving an

invariant property about the register file, we

may have to know that the reorder buffer is

51MAY–JUNE 1999

ISA0

ISAm

ISA′m

ISA′′ m

MA0

MA′′ n

MAn

Proj
Proj

Proj

Figure 3. Correctness diagrams for external interrupts.

working correctly. This can be characterized

by a new design invariant. To show that the

newly defined invariant holds, we may further

have to define new invariants about execution

units, and so on. Eventually, we have a suffi-

ciently strong set of invariants, from which we

can show the validity of the MA design.

The verified invariants must satisfy six

requirements:11

• if the MA is in a flushed state, every

instruction in the MA is committed;

52

FM9801 VERIFICATION

IEEE MICRO

ACL2 (A Computational Logic for Applicative Common Lisp) is both a
programming language and a system for analyzing models. The ACL2
language implements a subset of Common Lisp. We use ACL2 much like
a hardware designer would use VHDL or C; that is, we use it to specify
our designs at various levels of abstraction. Also, like VHDL and C, we
execute (simulate) our models to evaluate their properties. The critical
difference between ACL2 and a language like VHDL is that there is a for-
mal definition of every ACL2 language construct. We use these formal
definitions to deduce properties of our models.

Consider the following definition of a ripple-carry adder in C:

bit a[64], b[64], c_in; //inputs
bit sum[64], c_out; //outputs
bit c;

c = c_in;
for(i=0 ; i < 64 ; i++)

{
sum[i] = xor3(a[i], b[i], c);
c = maj3(a[i], b[i], c);

}
c_out = c;

We can execute this program (fragment) by initializing arrays a and b and
the variable c_in. The results will be placed in the array sum and variable
c_out. We can do the same thing by defining several ACL2 functions.

(defun adder (a b c i n)
(if (and (naturalp i) (naturalp n) (< i n))

(let ((a_i (logbit i a))
(b_i (logbit i b)))

(logcons (xor3 a_i b_i c)
(adder a b (maj3 a_i b_i c)

(+ i 1) n)))
c))

(defun c_out (a b c_in)
(logbit 64 (adder a b c_in 0 64)))

(defun sum (a b c_in)
(loghead 64 (adder a b c_in 0 64)))

Imagine that we would now like to prove a commutative property of
our adder; that is, we want to prove that any two initial values for a and
b can be swapped without affecting the result. In C, the only mechanism
for “proving’’ this is to execute this program with all of the possible ini-
tial values of a and b. This would require a great deal of simulation time
as there are roughly 1038 possible combinations. C does not have rules
for manipulating programs; in fact, C does not provide mechanisms for
specifying programs. VHDL is only slightly better in this regard as it pro-

vides the assert command as a runtime check, but it does not provide
specification nor reasoning mechanisms.

The meaning of every ACL2 built-in primitive has been given a formal
meaning—these are called axioms. We know that each axiom is valid.
In addition, a number of axioms about propositional logic, rational num-
bers, and lists establish initial truths about the ACL2 primitive functions.
For instance, zero is an integer, and zero is different than every other
integer.

ACL2 also provides rules of inference to derive additional truths (the-
orems) from the initial axioms. By repeated application of these rules
(such as the commutativity of addition), we can establish the validity of
very complicated models. For instance, ACL2 has been used to prove the
correctness of a number of things: the FM9801 microprocessor, the divide
algorithm of the AMD K5 microprocessor, and Motorola’s CAP DSP
pipeline, among others. These proofs involve very large models with
extremely large state spaces. Both the ISA and MA models of the FM9801
processor include the full memory.

To facilitate the validation of very large models, the ACL2 authors
have mechanized the application of rules of inference. That is, the authors
have provided a computer program that manages the definition of mod-
els and checks the proof requests a user submits. In this sense, ACL2 is
like model checking.5,12 However, ACL2 has a much more expressive logic
than that provided by a model-checking system. As such, ACL2 has been
used to specify the operation of an entire microprocessor—something
that would be extremely difficult to handle with modeling checking.

The verification of theorems using ACL2 is much like proving proper-
ties in high-school algebra. The theorem prover is led to a proof by pro-
viding it with a graduated sequence of steps (lemmas) sufficiently ”close
together’’ so that the theorem prover can fill in the missing parts of the
proof. If a user asks the ACL2 system to consider a proof that is “too
hard,’’ it will either fail, run forever, or exhaust the available computing
resources. In this way, the ACL2 system differs from model checking,
which provides an algorithm that runs to completion, assuming there are
adequate memory and computational resources.

A drawback of using the solely algorithmic approach provided by model-
checking systems is that the size of the models that can be checked is
quite limited. ACL2 can handle larger models: ACL2 can reason about
arbitrarily large models but requires that the user structure the proof so
that ACL2 can check it. We use ACL2 to check the validity of very large
models. In the FM9801 verification, we used the ACL2 system to check that
the MA model correctly implements the ISA model. We, as well as many
other researchers, are looking for ways to combine model checking with
a theorem-proving approach, such as provided by ACL2.

ACL2

• the program counter must correctly

point to the next instruction to be

fetched, unless it is fetching instructions

speculatively;

• the register file contents must match at

the two levels when the instructions are

committed;

• the memory contents must match when

instructions complete their memory

operations;

• the initial (flushed) state must be well-

formed and satisfy the invariants; and

• each time the MA steps it returns a well-

formed state satisfying the invariants.

We can prove our correctness criterion from

the invariants satisfying these requirements.

In this sense, our proof approach reduced the

problem of checking the correctness criterion

to the problem of verifying our design invari-

ants. During the invariant strengthening

process, we have used the ACL2 theorem

prover to verify every invariant condition. (See

the “ACL2” sidebar.) The verification of

invariant conditions is also the place where we

discovered faults in our example design.

Verification summary
We have used the ACL2 theorem prover to

completely verify that the entire architecture

is working correctly. We first ran test programs

on our executable specification to eliminate

easy bugs, and then applied our formal veri-

fication techniques. Our ACL2 specification

of the machine and the proof scripts are avail-

able at http://www.cs.utexas.edu/users/sawa-

da/FM9801.

The human cost of conducting such verifi-

cation is a serious practical concern. To guide

the ACL2 theorem proving system to a proof,

we had to manually write many lemmas. In

Table 1, we list the size of the ACL2 proof

script files and the time to run the ACL2 the-

orem proving system on these files using a 200-

MHz PentiumPro processor. We have found

that the human effort devoted to the corre-

sponding task is generally proportional to the

size of the ACL2 prover scripts, not to the

CPU time. We wrote the ISA and MA speci-

fications in one month, but the whole verifi-

cation project took about 15 person months.

Although the verification task is labor inten-

sive, our technique seems to scale well with

the machine size. We have compared the size

of our machine specification and the verifica-

tion script for two other projects13 in which

we employed a similar approach, but with dif-

ferent example machine sizes. Table 2 lists

these results.

During the creation of the verification scripts

for the FM9801, we found 14 design faults in

our MA design. Most of these design faults

were subtle bugs, since easy bugs had already

been eliminated by simulation. We believe

some of the bugs would have been difficult to

discover with simulation techniques. For

instance, we found a bug that required seven

instructions issued in certain timing with an

unusual memory delay to be exposed. We also

found a performance bug that did not expose

incorrect behavior visible to the programmer.

All of these bugs were found during the

invariant verification. When the theorem

prover failed to prove an invariant condition,

we found that some microarchitectural com-

ponents did not behave as we had expected.

This often revealed a bug that may cause

incorrect behaviors visible to programmers.

Other analyses and documentation
The level of precision that we have

employed here is necessary to permit the for-

mal verification of microprocessors of this

53MAY–JUNE 1999

Table 1. ACL2 script size and CPU time for
different verification phases.

Script size Certification time
Type of ACL2 script (Kbytes) (minutes)
Definitions of ISA and MA 140 14

Intermediate abstraction 55 6

Definitions of invariants 89 7

Proof of shared lemmas 481 58

Proof of invariants 1,034 211

Proof of criterion 37 11

Table 2. Sizes of ACL2 proof scripts for different
machine design examples.

Verified machine Specification Total script
design examples only (Kbytes) (Kbytes)

Small example machine 13 169

CAV ’97 design 78 757

FM9801 design 140 1,909

complexity. This level of precision also pro-

vides a basis for other analyses. An important

product of our work is that exactly the same

models can be used for simulation and other

analyses. Thus, the cost of producing a special

(possibly inaccurate) model is unnecessary.

For instance, to carry out our functional

proof obligation, we were required to con-

struct a witness function that calculates the

exact number of instructions executed by the

pipelined design. It is possible to prove

bounds on clocks per instruction (CPI) from

the witness function, given that the memory

delays and the branch prediction delays are

known. Also, the use of formal models does

not imply lower simulation performance.

Brock reported that his ACL2 model simu-

lated a digital signal processor faster than its

equivalent Cadence-based specification.13

The formal specification of microarchitec-

ture is necessary for formal verification. Shar-

ing the same model for simulation and other

analysis can reduce the cost of creating such

models. The executable nature of our formal

models is especially important for the accep-

tance of formal verification by design engi-

neers. In this way, the formal specification of

high-level design does not take anything away

from a designer, but it does add another ver-

ification procedure.

We also want to see our formal specifica-

tions used as documentation for a hardware

system. We are working toward the point

where documentation for a hardware system

is a formula manual—a collection of fully for-

mal specifications that provide a precise and

complete basis for using and designing a spec-

ified device. To assure that the formula man-

ual is correct, it will be necessary to prove that

a design meets all of its specifications. This

formula manual can be used as a reference for

the system programmers who need the pre-

cise specification of the device. It can also be

used as a reference for the register-transfer-

level designers, so that the ambiguity of

microarchitectural specification written in

natural languages can be avoided.

The FM9801 microprocessor is one of

most complex designs ever submitted to

a complete formal verification. We verified that

our MA design would always get the answer

predicted by the FM9801 ISA specification.

The use of executable formal logic to repre-

sent our hardware design has provided us with

means to perform both simulation and formal

verification. It also provided a basis for other

analyses such as performance analysis. Break-

ing the verification problem into a number of

smaller invariant proofs was critical to the ver-

ification of such a large design. We used the

ACL2 theorem-proving system to mechani-

cally certify the correctness of all proof scripts.

During the course of our verification, we

found 14 subtle bugs in the design, which had

escaped detection during the simulation.

Our verification technique seems to scale

well with respect to the size of the implemen-

tation, even though the process is labor inten-

sive. At this moment, the lack of the

integration of other automated verification

techniques, such as model checking, required

us to verify all the invariant conditions with

the ACL2 theorem prover. Reducing the cost

of verifying invariant conditions is an impor-

tant problem for future research. An interest-

ing approach to combine theorem proving

and model checking is already emerging.14

Industrial microprocessor specifications are

written in natural language augmented with

charts, graphs, and tables. Formal definitions of

high-level specifications are rare even for small

sections of industrial designs and nonexistent

for large designs. Since there are no formal spec-

ifications with which to compare RTL or MA

designs, industry does not employ formal veri-

54

FM9801 VERIFICATION

IEEE MICRO

We hope efforts like the

FM9801 example will

persuade industry to consider

using formal verification

techniques at the

microarchitectural level as well

as at the register-transfer level

for property checking.

fication at the level we have presented here; how-

ever, this level of verification is arguably the area

of the design process that needs the most assis-

tance. We hope efforts like the FM9801 exam-

ple will persuade industry to consider using

formal verification techniques at the microar-

chitectural level as well as at the register-trans-

fer level for property checking. MICRO

References
1. M. Kaufmann and J.S. Moore, ACL2: An

Industrial Strength Version of Nqthm, Proc.

11th Ann. Conf. Computer Assurrance,

COMPASS-96, IEEE Computer Society

Press, June 1996, pp. 23-34.

2. B.C. Brock and W.A. Hunt, Jr., “The DUAL-

EVAL Hardware Description Language and

Its Use in the Formal Specification and Ver-

ification of the FM9001 Microprocessor,”

Formal Methods in System Design, Kluwer

Academic Publishers, Dordrecht, Nether-

lands, Vol. 11, Issue 1, July, 1997, pp. 71-

104.

3. M.K. Srivas and S.P. Miller, Formal Verifica-

tion of an Avionics Microprocessor, Tech.

Report CSL-95-04, SRI Int’l Computer Sci-

ence Laboratory, Menlo Park, Calif., June

1995.

4. B.C. Brock, M. Kaufmann, and J.S. Moore,

“ACL2 Theorems About Commercial Micro-

processors,” Formal Methods in Computer-

Aided Design (FMCAD’96), Lecture Notes in

Computer Science 1166, M. Srivas and A.

Camilleri, eds., Springer Verlag, Berlin, 1996,

pp. 275-293; also http://www.cs.utexas.

edu/users/moore/acl2/index.html.

5. K.L. McMillan, Symbolic Model Checking,

Kluwer, Boston/Dordrecht/London, 1993.

6. Formal Semantics for VHDL, C.D. Koos and

P.T. Breuer, eds., Kluwer, 1995.

7. M.J.C. Gordon, “The Semantic Challenge of

Verilog HDL,” Proc. 10th Ann. IEEE Symp.

Logic in Computer Sci., (LICS’95), IEEE CS

Press, pp. 136-145.

8. B.C. Brock, W.A. Hunt, Jr., and M. Kauf-

mann, The FM9001 Microprocessor Proof,

Tech. Report 86, Computational Logic, Inc.,

Austin, Tex, Dec., 1994, http://www.cli.com/

reports/files/86.ps.

9. J.R. Burch and D.L. Dill, “Automatic Verifi-

cation of Pipelined Microprocessor Control,”

Proc. Computer-Aided Verification (CAV ’94),

Lecture Notes in Computer Sci. 818, D. Dill,

ed., June 1994, Springer-Verlag, pp. 68-80.

10. J.R. Burch, “Techniques for Verifying Super-

scalar Microprocessors,” Proc. Design

Automation Conf. (DAC ’96), ACM Press,

N.Y., June 1996, pp. 552-557.

11. J. Sawada and W. Hunt, Jr., “Processor Ver-

ification with Precise Exceptions and Spec-

ulative Execution,” Proc. Computer-Aided

Verification (CAV ’98), Lecture Notes in Com-

puter Science 1427, A.J. Hu and M.Y. Vardi,

eds., Springer Verlag, 1998, pp. 135-146.

12. C-J.H. Seger and R.E. Bryant, Formal Verifi-

cation by Symbolic Evaluation of Partially-

Ordered Trajectories, Tech. Report 93-8,

Computer Sci. Dept., Univ. of British Colum-

bia, Vancouver, 1993.

13. J. Sawada and W. Hunt, Jr., “Trace Table

Based Approach for Pipelined Microproces-

sor Verification,” Proc. Computer-Aided Ver-

ification, CAV ’97, Lecture Notes in

Computer Science 1254, Springer Verlag,

1997, pp. 364-375.

14. K.L. McMillan, “Verification of an Imple-

mentation of Tomasulo’s Algorithm by Com-

positional Model Checking,” Proc.

Computer-Aided Verification (CAV ’98), Lec-

ture Notes in Computer Science 1427, A.J.

Hu and M.Y. Vardi, eds., Springer Verlag,

1998, pp. 110-121.

Warren A. Hunt, Jr., is a research staff mem-

ber at IBM’s Austin Research Laboratory and

a research fellow at the University of Texas at

Austin. His research interests include hard-

ware verification, circuit design, and mecha-

nized theorem proving. Hunt holds a BSEE

from Rice University and a PhD in comput-

er science from the University of Texas. He is

a member of the IEEE, IEEE Computer Soci-

ety, and ACM.

Jun Sawada is a PhD student at the Universi-

ty of Texas at Austin. His research interests

include hardware design and verification, auto-

mated theorem proving, model checking, and

hardware specification languages. He holds an

MS in mathematical science and a BS in math-

ematics from Kyoto University, Japan.

Direct comments about this article to War-

ren Hunt, IBM Corporation, Mail Stop 9460,

Building 904, 11501 Burnet Road, Austin,

TX 78758; whunt@austin.ibm.com.

55MAY–JUNE 1999

