
Core Location

Academy for iOS App Development

Dr. William C. Bulko

Core Location is a framework that provides the following services
for a device to determine:
• its geographic location
• Its altitude
• Its orientation
• Its position relative to a nearby beacon.

The framework uses all available onboard hardware to do this.
• Wi-fi and/or cellular
• GPS
• Bluetooth
• Magnetometer
• Barometer

Core Location

To begin using Core Location services, you must first import the
framework, and then create a CLLocationManager object to
start, stop, and manage the delivery of location-related events to
your app.

import CoreLocation
 . . .
var locationManager = CLLocationManager()

Then you must ask the user permission to use Location Services.

locationManager?.requestWhenInUseAuthorization()

Core Location (cont.)

This will cause the system to
bring up an alert requesting
access from the user.

Once the user responds, your
app records the user’s response,
and will not display this alert
again.

Core Location (cont.)

MapKit is an API that makes it easy to display maps, plot
locations, draw routes and other shapes on top of the map.
• Elements drawn on top of the map are called overlays.

You can choose what kind of map is rendered:
• Standard
• Satellite
• Hybrid

You can define pins (annotations) for locations of interest.
• You can define the color of pins.
• You can define callouts that show some basic identifying

information when the pin is touched.

MapKit

In order to display a map, you must:
• Import MapKit
• Include an MKMapView somewhere in a view controller

There are methods available for a number of things, including:
• Adding overlays
• Setting center of the map and the currently visible region of the

map
• Changing the map type
• Using coordinates (latitude, longitude) for pin location and/or for

a travel path
• Adding annotations

MapKit (cont.)

Animation

Academy for iOS App Development

Dr. William C. Bulko

What does it mean to animate something?
• To bring to life
• To cause to appear as if it’s moving or changing

In the context of iOS applications, this means to modify aspects of
the user interface in a special way as to produce the appearance of
action.

Why would we want to animate something?
• It draws the user towards things that change
• It indicates importance at a particular moment
• It makes your app look cool, fun, or polished – which can be a

differentiator

Animation

You can animate the following properties of a UIView derived
object:

• frame – move or scale the view (relative to its superview)
• bounds – move the view’s contents within the view
• center – move the view relative to the screen
• transform - scale, rotate, or translate the view relative to its

center point
• alpha - gradually change the transparency of the view
• backgroundColor - change the view’s background color
• contentStretch - change the way the view’s contents are

stretched to fill the available space

Animation

The basic UIView animation method is UIView.animate:

 UIView.animate(
 withDuration: <duration>,
 delay: <delay>,
 options: <options>,
 animations: {
 <animation code>
 }
 completion: {
 <completion code>
 }
)

UIView.animate

duration: how long in seconds to run the animation
delay: how long to wait until starting the animation
options:
 .curveEaseInOut begin slow, accelerate, end slow
 .curveEaseIn begin slow, accelerate to end
 .curveEaseOut begin quickly, slow to end
 .curveLinear even over the duration
 .repeat make the animation loop forever
 .autoreverse animate forward, then reverse

animation code:
 identifies the ending value for the selected attribute(s)
completion code:
 code to be executed at the end of the animation

UIView.animate (cont.)

Adjust the alpha:

// Starting alpha value
self.labelName.alpha = 1.0

UIView.animate(
 withDuration: 3.0,
 animations: {
 self.labelName.alpha = 0.0
 }
)

Alpha Animation: Fade Out

Adjust the center:

// Starting center value
self.labelName.center.x = self.view.center.x

UIView.animate(
 withDuration: 3.0,
 animations: {
 self.labelName.center.x +=
 self.view.bounds.width
 }
)

Center Animation: Slide Out to Right

Adjust the transform:

UIView.animate(
 withDuration: 3.0,
 animations: {
 // 180 degree rotation
 self.labelName.transform =
 self.labelName.transform.rotated(

 by: CGFloat(Double.pi))
 }

)

Center Animation: Spinning

