Academy for iOS App Development
Dr. William C. Bulko

View Frame and Bounds




* CGPoint: a structure that contains a point in a two-
dimensional coordinate system.

EX. let pt = CGPoint (x:3, y:-5)
" CGSize: a structure that contains width and height values.

EX. let mySize = CGSize (width:10,
height:5)

= CGRect: a structure that contains the location and dimensions
of a rectangle.

EX. let rect = CGRect(x: 3, y: 5,
width: 10, height: 5)

Oor let rect = CGRect(origin:pt,
size:mySize)



» Frame and Bounds are fundamental concepts for all of
the elements in the UI.

= Each view has both a frame and a bounds structure. The
structure is a CGRect and consists of 4 floats.

— The frame of an UlView is the rectangle, expressed
as a location (x,y) and size (width,height) relative to
the superview it is contained within.

— The bounds of an UlView is the rectangle, expressed
as a location (x,y) and size (width,height) relative to
its own coordinate system (0,0).



Frame Bounds
origin = (0,0) origin = (0,0)
width = 219 width = 219
height = 300 height = 300



Frame Bounds
origin = (71,50) origin = (0,0)
width = 219 width = 219
height = 300 height = 300



Academy for iOS App Development
Dr. William C. Bulko

Scroll Views




= Scroll Views provide a way to present content larger than a
single screen.

— Critical for phones since they have limited screen real estate
— Also helpful for iPads

= Scroll Views provide a way for moving within the content to
view various parts of it.

To implement scrolling:
» Create a UIScrollview and define its properties

= Make the UIScrollVview a subview of the VC’s view

* Make the view you want scrollable a subview of the
UIScrollView.



Academy for iOS App Development
Dr. William C. Bulko

Gesture Recognizers




There are 4 general types of Ul events in iOS:

Touch events: the most common

Motion events

Remote-control events: allow a responder object to receive
commands from an external accessory or headset (usually to
manage audio and video)

Press events: represent interactions with a game controller,
AppleTV remote, or other device that has physical buttons



Gestures refer to touches and touch events.
» Central to the modern smart phone experience
* A core built-in capability in iOS

A touch is an instance of the user putting a finger on the screen.
The OS and the hardware work together to know when a finger
touches the screen, where it is, when it moves, and when it is no

longer touching the screen.

Its location at any point in time is reduced to a single appropriate
point.



Why are they important?

* They allow us to interact more naturally and intuitively with the
application

* It is a significant paradigm shift to how humans interact with
computers: analogous to what happened when people were first
provided GUIs to interact with computers



Gesture recognizers are high-level mechanisms provided by iOS
that takes care of the nitty-gritty of touch events, and makes it very
easy to respond to a set of common touch events/sequences.

* They handle touches and movements of one or more fingers that
happen on a specific area of the screen

* They are objects derived from the abstract UlGestureRecognizer
class that are related to a view, and monitor for a predefined
gesture made on that view

* There are some predefined subclasses which deal with specific
(common) kinds of gestures

« They all perform an action once a valid gesture is detected.

Without gesture recognizers, you would be writing pages of code to
handle what takes only a few lines of code with gesture

recognizers.



You can set up gesture recognizers in IB or in code.
« A view can contain more than one gesture recognizer

* They are contained in a UlView property (an array) named
gestureRecognizers

However, just one gesture can occur at any given point in time.

There are two types of gesture recognizers:

« Discrete: manage a single event; for example, touch to select
an object

« Continuous: manage a series of events; for example, dragging
an object on the screen



Predefined gesture recognizer classes:

UITapGestureRecognizer (discrete)
UISwipeGestureRecognizer (discrete)
UIPanGestureRecognizer (continuous)
UIPinchGestureRecognizer (continuous)
UIRotationGestureRecognizer (continuous)
UILongPressGestureRecognizer (continuous)

UIScreenEdgePanGestureRecognizer (continuous)



In 1B, identify the object that you want to manipulate on the

storyboard. Drag a Gesture Recognizer object on top of the
target object.

In the Swift file, write a function to handle the gesture.

In IB, ctrl-drag the Gesture Recognizer object to the View
Controller. Choose the name of the function you wrote.

Click on the target object and go to the Attribute
Inspector. Make sure "User Interface Enabled" is clicked on.



Create a Gesture Recognizer using one of the functions listed

on the previous chart.

let tapRecognizer =
UlTapGestureRecognizer (target: self, action:
#selector (handleTap (recognizer:)))

Set up any properties for the Gesture Recognizer that you may
want.

Associate the Gesture Recognizer with the target object.
targetObject.addTapRecognizer (tapRecognizer)

In the Swift file, write a function to handle the gesture.
@IBAction func handleTap (recognizer:
UlTapGestureRecognizer) {
<code>



