
CS303E: Elements of Computers
and Programming

More on Lists

Dr. Bill Young
Department of Computer Science

University of Texas at Austin
© William D. Young, All rights reserved.

Last updated: August 28, 2024 at 13:24

CS303E Slideset 10: 1 More on Lists

List Example: Counting Occurrences of Letters

Suppose we want to count the
occurrences of letters in a given
text. Here’s an algorithm.

1 Break the text into words
2 Create a list called “counts” of 26 zeros.
3 For each letter in each word:

Convert it to lowercase
If it’s the ith letter, increment counts[i] by 1

4 Print the counts list is a nice format.

There’s a version of this program in the book in Listing 10.8.
We’re solving a slightly different problem.

CS303E Slideset 10: 2 More on Lists

List Example: Counting Occurrences of Letters

In file CountOccurrencesInText.py:
def countOccurrences (text):

""" Count occurrences of each of the 26 letters
(upper or lower case) in text. Return a list of
counts in order ."""

Create a list of 26 0’s.
counts = [0 for i in range (26)]
Not strictly necessary ; could just count
chars in text.
wordList = text. split ()
for word in wordList :

word = word. lower ()
for ch in word:

if ch. islower ():
index = ord(ch) - ord(’a’)
counts [index] += 1

return counts

CS303E Slideset 10: 3 More on Lists

List Example: Counting Occurrences of Letters

Now we want to print the counts in a nice format, 10 per line.

def printCounts (counts):
""" Print the letter counts 10 per line. """
onLine = 0
for i in range (26):

Convert the index into the array into the
corresponding lower case letter .
letterOrd = i + ord(’a’)
print (chr(letterOrd) + ":", counts [i], end = " ")
onLine += 1
If we ’ve printed 10 on the line , go to the next

line.
if (onLine == 10):

print ()
onLine = 0

print ()

CS303E Slideset 10: 4 More on Lists

List Example: Counting Occurrences of Letters

def main ():
text = """ Fourscore and seven years ago our fathers

brought forth , on this continent , a new nation ,
conceived in liberty , and dedicated to the
proposition that all men are created equal ."""

counts = countOccurrences (text)
printCounts (counts)

>>> from CountOccurrencesInText import *
>>> main ()
a: 13 b: 2 c: 6 d: 7 e: 18 f: 2 g: 2 h: 6 i: 9 j: 0
k: 0 l: 4 m: 1 n: 14 o: 14 p: 2 q: 1 r: 11 s: 6 t: 15
u: 4 v: 2 w: 1 x: 0 y: 2 z: 0

CS303E Slideset 10: 5 More on Lists

Aside: Using Docstring

A str constant at the top of your function/class/module is stored
by Python as the docstring, and accessible to your program. using
the method FunctionName.__doc__.
>>> from CountOccurrencesInText import *
>>> printCounts . __doc__
’ Print the letter counts 10 per line. ’
>>> countOccurrences . __doc__
’ Count occurrences of each of the 26 letters \n

(upper or lower case) in text. Return a list of\n
counts in order .’

This also works for system defined functions.
>>> import math
>>> math.sqrt. __doc__
’sqrt(x)\n\ nReturn the square root of x.’

CS303E Slideset 10: 6 More on Lists

Searching a List

A common operation on lists is
searching. To search a list means to
see if a value is in the list.

If all you care about is whether or not
lst contains value x, you can use:
x in lst.

But often you want to know the index
of the occurrence, if any.

CS303E Slideset 10: 7 More on Lists

Linear Searching

If the list is not sorted, often the best you can do is look at each
element in turn. This is called a linear search.

From file LinearSearch.py:

def linearSearch (lst , key):
for i in range(len(lst)):

if key == lst[i]:
return i

return -1

If the item is present, you stop as soon as you find it. On average,
how many comparisons would you expect to make if the item is
there? How many if it’s not there?

On average, you’d expect to find the item after you’ve searched
about half the list, assuming it’s there. If it’s not, you won’t know
that until you’ve searched the whole list.

CS303E Slideset 10: 8 More on Lists

Linear Searching

>>> from LinearSearch import *
>>> lst = [1, 3, 5, 7, 9]
>>> linearSearch (lst , 7)
3
>>> linearSearch (lst , 1)
0
>>> linearSearch (lst , 8)
-1
>>> linearSearch ([1, 2, 1, 2, 1, 2], 2)
1

We use -1 to indicate that the item is not in the list, since -1 is not
a legal index.

CS303E Slideset 10: 9 More on Lists

Find Multiple Occurrences

Notice that linearSearch only finds the first occurrence of the
key. To find all, you might do:
def findAllOccurrences (lst , key):

Return a list of indexes of occurrences
of key in lst.
found = []
for i in range (len(lst)):

if key == lst[i]:
found . append (i)

return found

>>> from LinearSearch import *
>>> findAllOccurrences ([1, 2, 1, 2, 1, 2], 2)
[1, 3, 5]

Here you always have to search the whole list.

CS303E Slideset 10: 10 More on Lists

Using Index

You can use the list method index to do linear search if you know
that the item is present.

>>> lst = [9, 3, 5, 7, 1, 2, 4, 8]
>>> lst.index(7)
3
>>> lst.index(10)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
ValueError : 10 is not in list
>>>

The index method is almost certainly implemented using linear
search.

CS303E Slideset 10: 11 More on Lists

Searching a Sorted List

Suppose you were looking for your test in a pile containing all tests
for the 600+ students in this class.

If they weren’t sorted, you’d have to look through every one (linear
search).

If they are sorted alphabetically by
names:

Divide the pile into two halves,
pile1 and pile2.
If your test is on top of pile2,
you’re done.
If your name is alphabetically lower than the name on the test
on top of pile2, then search pile1 using the same approach.
Otherwise, search pile2 using the same approach.

CS303E Slideset 10: 12 More on Lists

Binary Search

In file BinarySearch.py:
def BinarySearch (lst , key):

""" Search for key in sorted list lst. """
low = 0
high = len(lst) - 1
while (high >= low):

mid = (low + high) // 2
if key < lst[mid]:

high = mid - 1
elif key == lst[mid]:

return mid
else:

low = mid + 1
What ’s true here? Why this value ?
return (-low - 1)

CS303E Slideset 10: 13 More on Lists

Using Binary Search

>>> from BinarySearch import BinarySearch
>>> lst = [2, 4, 7, 9, 10, 12, 14, 17, 20]
>>> BinarySearch (lst , 9)
3
>>> BinarySearch (lst , 13)
-7
>>> low = -(-7 + 1) # failed search
>>> low # returns -7 == (-low - 1)
6
>>> list. insert . __doc__
’L. insert (index , object) -- insert object before index ’
>>> lst. insert (low , 13)
>>> lst
[2, 4, 7, 9, 10, 12, 13, 14, 17, 20]

Is this guaranteed to find the first occurrence of the key in the list?

CS303E Slideset 10: 14 More on Lists

Complexity of Both Search Methods

Linear Search: each comparison removes one item from the search
space; number of comparisons proportional to the length of the list
searched.

Binary Search: each step cuts the search space in half. With n
items, you can only cut n in half log2(n) times.

How many comparisons would you expect for a list of 1000 items?

CS303E Slideset 10: 15 More on Lists

Let’s Take a Break

CS303E Slideset 10: 16 More on Lists

Sorting

Another very important function is sorting a list. This assumes
that the list items are comparable.

There are many different sorting algorithms; you will study several
in CS313E. Two of the simplest are:

selection sort
insertion sort

CS303E Slideset 10: 17 More on Lists

Selection Sort

Algorithm:
1 Find the smallest

item in lst.
2 Swap it with the first

element.
3 Repeat for slice

lst[1:].
4 Stop when there’s

only one element left.

CS303E Slideset 10: 18 More on Lists

SelectionSort Code

In file SelectionSort.py:
def selectionSort (lst):

""" Sort lst in ascending order . """
For each element lst[i] in lst [0... len -1]:
for i in range (len(lst) - 1):

prints the list with swap point marked
printSorting (lst , i)
currentMin = lst[i]
currentMinIndex = i
find the smallest element in the remainder
the list and swap with lst[i].
for j in range (i + 1, len(lst)):

if currentMin > lst[j]:
currentMin = lst[j]
currentMinIndex = j

Swap lst[i] with lst[currentMinIndex]
if necessary .
if currentMinIndex != i:

lst[currentMinIndex] = lst[i]
lst[i] = currentMin

printSorting (lst , i+1)

CS303E Slideset 10: 19 More on Lists

SelectionSort Executing
This prints the list at each step with a “|” showing the swap point.

>>> import random
>>> from SelectionSort import selectionSort
>>> lst = [random . randint (0, 99) for x in range (15)]
>>> lst
[54 , 79, 20, 9, 74, 21, 78, 70, 54, 18, 96, 57, 28, 27, 67]
>>> selectionSort (lst)
[| 54 79 20 9 74 21 78 70 54 18 96 57 28 27 67]
[9 | 79 20 54 74 21 78 70 54 18 96 57 28 27 67]
[9 18 | 20 54 74 21 78 70 54 79 96 57 28 27 67]
[9 18 20 | 54 74 21 78 70 54 79 96 57 28 27 67]
[9 18 20 21 | 74 54 78 70 54 79 96 57 28 27 67]
[9 18 20 21 27 | 54 78 70 54 79 96 57 28 74 67]
[9 18 20 21 27 28 | 78 70 54 79 96 57 54 74 67]
[9 18 20 21 27 28 54 | 70 78 79 96 57 54 74 67]
[9 18 20 21 27 28 54 54 | 78 79 96 57 70 74 67]
[9 18 20 21 27 28 54 54 57 | 79 96 78 70 74 67]
[9 18 20 21 27 28 54 54 57 67 | 96 78 70 74 79]
[9 18 20 21 27 28 54 54 57 67 70 | 78 96 74 79]
[9 18 20 21 27 28 54 54 57 67 70 74 | 96 78 79]
[9 18 20 21 27 28 54 54 57 67 70 74 78 | 96 79]
[9 18 20 21 27 28 54 54 57 67 70 74 78 79 | 96]

CS303E Slideset 10: 20 More on Lists

printSorting Code

This is the code to print the list as the selectionSort proceeds:

def printSorting (lst , point):
print("[", end="")
for i in range(point):

print(lst[i], end = " ")
print("|", end = " ")
for i in range(point , len(lst)):

print(lst[i], end = " ")
print("]")

CS303E Slideset 10: 21 More on Lists

Insertion Sort

Another simple (but pretty
inefficient) sorting algorithm is
insertion Sort.

Algorithm: For each index in
the list, take the element at
that position and insert it into
the sorted elements before it in
the list.

CS303E Slideset 10: 22 More on Lists

Insertion Sort

def insertionSort (lst):
for i in range (1, len(lst)):

printSorting (lst , i)
insert lst[i] into sorted sublist
lst [0:i] so that lst [0:i+1] is sorted
currentElement = lst[i]
k = i - 1
while k >= 0 and lst[k] > currentElement :

lst[k + 1] = lst[k]
k -= 1

Insert the current element into lst[k+1]
lst[k + 1] = currentElement

printSorting (lst , i+1)

CS303E Slideset 10: 23 More on Lists

Insertion Sort Execution

>>> from InsertionSort import insertionSort
>>> import random
>>> lst = [random . randint (0, 99) for x in range (15)]
>>> lst
[94 , 38, 59, 36, 72, 89, 65, 76, 63, 90, 39, 49, 34, 27, 47]
>>> insertionSort (lst)
[94 | 38 59 36 72 89 65 76 63 90 39 49 34 27 47]
[38 94 | 59 36 72 89 65 76 63 90 39 49 34 27 47]
[38 59 94 | 36 72 89 65 76 63 90 39 49 34 27 47]
[36 38 59 94 | 72 89 65 76 63 90 39 49 34 27 47]
[36 38 59 72 94 | 89 65 76 63 90 39 49 34 27 47]
[36 38 59 72 89 94 | 65 76 63 90 39 49 34 27 47]
[36 38 59 65 72 89 94 | 76 63 90 39 49 34 27 47]
[36 38 59 65 72 76 89 94 | 63 90 39 49 34 27 47]
[36 38 59 63 65 72 76 89 94 | 90 39 49 34 27 47]
[36 38 59 63 65 72 76 89 90 94 | 39 49 34 27 47]
[36 38 39 59 63 65 72 76 89 90 94 | 49 34 27 47]
[36 38 39 49 59 63 65 72 76 89 90 94 | 34 27 47]
[34 36 38 39 49 59 63 65 72 76 89 90 94 | 27 47]
[27 34 36 38 39 49 59 63 65 72 76 89 90 94 | 47]
[27 34 36 38 39 47 49 59 63 65 72 76 89 90 94 |]

CS303E Slideset 10: 24 More on Lists

Two-Dimensional Lists

Recall that lists in Python are heterogeneous, meaning that you
can have items of various types. List items can themselves be lists,
lists of lists, etc.
>>> grades = [[’Susie ’, 80, 59, 90, 75, 100] , \

[’Frank ’, 67, 87, 49, 24, 90] , \
[’Albert ’, 86, 59, 74, 82, 99] , \
[’Charles ’, 79, 69, 70, 80, 94]]

>>> grades [0] # a list
[’Susie ’, 80, 59, 90, 75, 100]
>>> grades [0][0] # an element of a list
’Susie ’
>>> grades [2][3]
74

Note that if the item at lst[i] is itself a list, you can index into
that list. You can think of them as row and column indexes.

CS303E Slideset 10: 25 More on Lists

Processing 2D Lists

In slidesets 3 and 9 we tackled the problem of processing student
grades and printing a nice table of results. Let’s try it again with a
2D representation of grades:

grades = [[’Susie ’, 80, 59, 90, 75, 100] , \
[’Frank ’, 67, 87, 49, 24, 90] , \
[’Albert ’, 86, 59, 74, 82, 99] , \
[’Charles ’, 79, 69, 70, 80, 94]]

Here each item in grades is a list containing a name, and 5 exam
grades.

CS303E Slideset 10: 26 More on Lists

Processing 2D Lists

In file ProcessStudentGrades.py:
The number of exams is a global constant .
EXAM_COUNT = 5

As usual , we need to print the header lines .

def printHeader ():
""" Print the header line for our table of grades . """
print ("Name | ", end = "")
for i in range (1, EXAM_COUNT + 1):

print (" T" + str(i) + " ", end = "")
print (" Avg")
print (" -----------|-", " ----" * (EXAM_COUNT + 1) , \

" ----", sep = "")

Note that the header depends on EXAM COUNT.
>>> printHeader ()
Name | T1 T2 T3 T4 T5 Avg
-----------|-----------------------------

CS303E Slideset 10: 27 More on Lists

Processing 2D Lists

def printGrades (grades):
""" Given a set of names and grades in a 2D list , print

them out in a nice tabular format . """
printHeader ()

There is one line/ record for each student .
numStudents = len(grades)

for student in range (numStudents):
Print the student name.
print (format (grades [student][0] , "10s"), \

"|", end = "")

Compute the sum of exam grades for this student .
gradesSum = 0
for j in range (1, EXAM_COUNT +1):

print (format (grades [student][j], "4d"), \
end = "")

gradesSum += grades [student][j]

Print average for this student ’s exams .
print (format (gradesSum / EXAM_COUNT , "6.2f"))

CS303E Slideset 10: 28 More on Lists

Printing Table

Here’s the result printing the table:
>>> from ProcessStudentGrades import *
>>> EXAM_COUNT
5
>>> grades = [[’Susie ’, 80, 59, 90, 75, 100] , \

[’Frank ’, 67, 87, 49, 24, 90] , \
[’Albert ’, 86, 59, 74, 82, 99] , \
[’Charles ’, 79, 69, 70, 80, 94]]

>>> printGrades (grades)
Name | T1 T2 T3 T4 T5 Avg
-----------|-----------------------------
Susie | 80 59 90 75 100 80.80
Frank | 67 87 49 24 90 63.40
Albert | 86 59 74 82 99 80.00
Charles | 79 69 70 80 94 78.40

CS303E Slideset 10: 29 More on Lists

Let’s Take a Break

CS303E Slideset 10: 30 More on Lists

Computing Averages

Suppose data like this:

grades = [[’Susie’, 80, 59, 90, 75, 100], \
[’Frank’, 67, 87, 49, 24, 90], \
[’Albert’, 86, 59, 74, 82, 99], \
[’Charles’, 79, 69, 70, 80, 94]]

How would you compute and print the averages for all exams?

Create a list sums of EXAM COUNT 0’s to record the sums;
For each student s and exam i, add s[i] to sums[i-1];
Why sums[i-1]?
For each element of sums, divide by the number of students;
Print out the results.

CS303E Slideset 10: 31 More on Lists

Computing Averages

Now let’s compute and print the averages for each exam:
def computeTestAverages (grades):

""" Given a 2D list of student grades , compute the
average of each test and print them. """

Create an array of EXAM_COUNT 0’s.
sums = [0 for x in range (EXAM_COUNT)]

There is one line/ record for each student .
numStudents = len(grades)
for student in range (numStudents):

for exam in range (1, EXAM_COUNT + 1):
grades has a name at the start of each line ,
but sums doesn ’t.
sums[exam - 1] += grades [student][exam]

Compute and print the averages for each Exam. Exams
are numbered from 1 to EXAM_COUNT .
for i in range (EXAM_COUNT):

print ("Test" + str(i+1) + " average : ", \
sums[i] / numStudents)

CS303E Slideset 10: 32 More on Lists

Putting It Together

>>> from ProcessStudentGrades import *
>>> printGrades (grades)
Name | T1 T2 T3 T4 T5 Avg
-----------|-----------------------------
Susie | 80 59 90 75 100 80.80
Frank | 67 87 49 24 90 63.40
Albert | 86 59 74 82 99 80.00
Charles | 79 69 70 80 94 78.40
>>> computeTestAverages (grades)
Test1 average : 78.0
Test2 average : 68.5
Test3 average : 70.75
Test4 average : 65.25
Test5 average : 95.75

Think about how you’d compute the class average, i.e., the
average of the averages of all of the exams.

CS303E Slideset 10: 33 More on Lists

One More 2D List Example

Let’s think about how we might generate a 2D list and fill it with
random ints. Here’s the book’s solution (section 11.2.2).

In file Lists2D.py:
def listOfListsRandomValues ():

This generates a 2D list of random numbers in [0..99].
Dimensions are input at run time by the user.
numberOfRows = int(input ("How many rows ?: "))
numberOfColumns = int(input ("How many columns ?: "))
matrix = [] # create an empty list
for row in range (numberOfRows):

Add an empty new row
matrix . append ([])

Fill it with numberOfColumns random ints
for column in range (numberOfColumns):

matrix [row]. append (random . randint (0, 99))

Finally , print out the newly generated matrix in
tabular format . Have to write this function .
printMatrix (matrix , numberOfRows)

CS303E Slideset 10: 34 More on Lists

2D List Example

> python Lists2D .py
How many rows ?: 8
How many columns ?: 10
[[60 , 4, 80, 55, 3, 13, 32, 29, 95, 11]

[58 , 91, 4, 68, 73, 19, 68, 79, 65, 11]
[44 , 93, 54, 59, 46, 34, 56, 74, 9, 2]
[41 , 70, 9, 64, 63, 47, 2, 30, 18, 13]
[10 , 46, 83, 31, 70, 39, 79, 24, 41, 69]
[82 , 19, 65, 78, 65, 42, 9, 31, 40, 51]
[94 , 49, 49, 82, 75, 19, 95, 42, 72, 34]
[58 , 29, 59, 49, 70, 36, 31, 46, 99, 20]]

CS303E Slideset 10: 35 More on Lists

printMatrix Code

BTW: Here’s the function used to print out the matrix in a nice
tabular format. Review this code on your own.

def printMatrix (matrix , numRows):
""" Print a 2D matrix in nice format . Note

that we ’re OK with the way a 1D matrix
prints . """

print ("[", end = "")
for i in range (numRows):

if (not i): # i.e., i == 0
print (matrix [i], end = "")

else:
print (" ", matrix [i], end = "")

if (i == numRows - 1):
print ("]")

else:
print ()

CS303E Slideset 10: 36 More on Lists

2D List Example Alternative

An alternative approach to solving this problem is to notice that
the 2D list contains numberOfRows lists, each containing
numberOfColumns random integers.

def listOfRandomValues (num):
This generates a list of random numbers
in [0..99] of length num.
return [random . randint (0, 99) for x in range (num)]

Notice the use of list comprehension.

CS303E Slideset 10: 37 More on Lists

2D List Example Alternative

def listOfListsRandomValues2 ():
This generates a 2D list of random numbers
in [0..99]. Dimensions are input at run time
by the user.

numberOfRows = int(input ("How many rows ?: "))
numberOfColumns = int(input ("How many columns ?: "))
matrix = [] # create an empty list
for row in range (numberOfRows):

Add a new row , which is just a list of
numberOfColumns random ints.
matrix . append (listOfRandomValues (numberOfColumns))

Finally , print out the newly generated matrix
printMatrix (matrix , numberOfRows)

CS303E Slideset 10: 38 More on Lists

Running Version 2

>>> from Lists2D import *
>>> listOfRandomValues (10)
[77 , 86, 16, 9, 79, 32, 50, 7, 63, 85]
>>> listOfRandomValues (10)
[21 , 27, 91, 15, 26, 83, 5, 0, 58, 87]
>>> listOfListsRandomValues2 ()
How many rows ?: 9
How many columns ?: 6
[[64 , 58, 77, 89, 93, 24]

[56 , 57, 73, 35, 29, 78]
[69 , 11, 74, 24, 3, 72]
[85 , 14, 91, 26, 41, 63]
[0, 5, 23, 34, 59, 53]
[48 , 29, 75, 83, 88, 90]
[63 , 86, 43, 99, 38, 58]
[53 , 27, 21, 69, 2, 8]
[27 , 45, 86, 99, 39, 45]]

CS303E Slideset 10: 39 More on Lists

2D List Example Alternative Alternative

Why not go one step further? What we want is a 2D list of
containing numberOfRows lists, each containing
numberOfColumns random integers. But that’s easy using list
comprehension (in a pretty sophisticated way)!
def listOfListsRandomValues3 ():

This generates a 2D list of random numbers in [0..99].
Dimensions are input at run time by the user.

numberOfRows = int(input ("How many rows ?: "))
numberOfColumns = int(input ("How many columns ?: "))

matrix = [[random . randint (0, 99) \
for col in range (numberOfColumns)] \

for row in range (numberOfRows)]

Finally , print out the newly generated matrix
printMatrix (matrix , numberOfRows)

CS303E Slideset 10: 40 More on Lists

Running Version 3

>>> from Lists2D import *
>>> listOfListsRandomValues3 ()
How many rows ?: 7
How many columns ?: 8
[[58, 16, 60, 81, 42, 76, 83, 49]

[18, 71, 10, 12, 65, 84, 86, 21]
[57, 54, 30, 12, 65, 9, 70, 6]
[70, 97, 3, 71, 77, 30, 3, 88]
[28, 93, 12, 66, 38, 90, 94, 75]
[38, 23, 7, 42, 50, 8, 38, 71]
[15, 60, 74, 3, 17, 42, 9, 59]]

CS303E Slideset 10: 41 More on Lists

Sorting 2D Lists
If you call the sort method on a 2D list, it sorts in lexicographic
order—sort on the first column of each row. If two rows match in
the first columns, sort those rows on the second column, etc.
>>> from ProcessStudentGrades import *
>>> printGrades (grades)
Name | T1 T2 T3 T4 T5 Avg
-----------|-----------------------------
Susie | 80 59 90 75 100 80.80
Frank | 67 87 49 24 90 63.40
Albert | 86 59 74 82 99 80.00
Charles | 79 69 70 80 94 78.40
>>> grades .sort ()
>>> printGrades (grades)
Name | T1 T2 T3 T4 T5 Avg
-----------|-----------------------------
Albert | 86 59 74 82 99 80.00
Charles | 79 69 70 80 94 78.40
Frank | 67 87 49 24 90 63.40
Susie | 80 59 90 75 100 80.80

Had there been two records for Albert, they’d have been sorted by
Test1. If those matched, by Test2, etc.

CS303E Slideset 10: 42 More on Lists

Ragged Lists

Note: A 2D list doesn’t have to be “rectangular.” That is, the
rows can be of different lengths.

listOfLists = [[1, 2, 3, 4, 5],
[6, 7, 8],
[],
[9, 10, 11, 12]]

Writing code to process such a “ragged” list requires a bit more
care.

CS303E Slideset 10: 43 More on Lists

Multidimensional Lists

It is sometimes useful to process 3D lists, 4D lists, or lists of even
higher dimension. A 3D list is simply a 1D list where each element
is a 2D list.

CS303E Slideset 10: 44 More on Lists

Next stop: Files.

CS303E Slideset 10: 45 More on Lists

