CS303E: Elements of Computers

and Programming

Files

Dr. Bill Young
Department of Computer Science
University of Texas at Austin

© William D. Young, All rights reserved.

Last updated: August 29, 2024 at 12:54

CS303E Slideset 11a: 1 Files

Value of Files

Files are a persistent way to store programs, input data, and
output data.

Files are stored in the memory of your
computer in an area allocated to the file
system, which is typically arranged into
a hierarchy of directories.

The path to a particular file details
where the file is stored within this
hierarchy.

CS303E Slideset 11a: 2 Files

Relative Pathnames

A path to a file may be absolute or relative.

If you just name the file, you're specifying that it is in the current
working directory, i.e., relative to where you currently are in the file
system hierarchy.

> pwd

/u/byoung/cs303e/slides

> 1ls -1 MTable

“rw-r----- 1 byoung prof 812 Sep 21 13:11 MTable

> 1s -1 /u/byoung/cs303e/slides/MTable

-rw-r----- 1 byoung prof 812 Sep 21 13:11 /u/byoung/cs303e/
slides/MTable

> 1s syllabus303e.html

ls: cannot access ’syllabus303e.html’: No such file or
directory

> 1ls ../syllabus303e.html

../syllabus303e.html

CS303E Slideset 11a: 3 Files

File Paths

On Windows, a file path might be:
c:\byoung\cs303e\slides\slideslla-files.tex
On Linux or MacOS, it might be:

/home/byoung/cs303e/slides/slideslla-files.tex
Python passes filenames around as strings, which causes some
problems for Windows systems, partly because Windows uses the

“\" in filepaths. Recall that backslash is an escape character, and
including it in a string may require escaping it.

CS303E Slideset 11a: 4 Files

There is a way in Python to treat a string as a raw string, meaning
that escaped characters are treated just as any other characters.

>>> print ("abc\ndef")
abc

def

>>> print (r"abc\ndef")
abc\ndef

Prefix the string with an "r”. You may or may not need to do this
for Windows pathnames including "\"

CS303E Slideset 11a: 5 Files

Getting Your Bearings

Students often find that the file they want to run isn't in the
directory where they're running Python. The following Python
program shows the current directory and lists the files in it:

Show the current directory and files in it.
import os
dir = os.getcwd ()
print ("Directory is: ", dir)
myfiles = os.listdir ()
for file in myfiles:
print (file)

> python showDirectory.py

Directory is: /u/byoung/cs303e/python
ComputeAngles.py

ComputeCircleArea.py

ExamExample.py

FindMax.py

Project2-fibonacci-numbers.py

CS303E Slideset 11a: 6 Files

Managing Files in Python

Python provides a simple, elegant interface to storing and
retrieving data in files.

open : establish a connection to the file and associate a
local file handle with a physical file.

close : terminate the connection to the file.
read : input data from the file into your program.

write : output data from your program to a file.

CS303E Slideset 11a: 7 Files

Opening a File

Before your program can access the data in a file, it is necessary to
open it. This returns a file object, also called a "handle,” that you
can use within your program to access the file.

CYP6B File Handle Our
_/ Program
CATB

Data In Data Out

(Operating (Our Python O
System) Program) o

It also informs the system how you intend for your program to
interact with the file, the “mode,” e.g., read or write.

CS303E Slideset 11a: 8 Files

Example of Opening a File

General Form:

fileHandle = open(filename, mode)

>>> outfile = open("MyNewFile", "w")
>>> outfile.write("My dog has fleas!\n")
18

>>> outfile.close ()

>>> # cntr-D out of interactive mode

> cat MyNewFile
My dog has fleas!

Here outfile is the file handle that you use to refer to the file
within your program.

CS303E Slideset 11a: 9 Files

Opening a File: Modes

Here are some permissible modes for files:

Mode Description
“r" Open for reading.
“w” Open for writing. If the file already exists the
old contents are overwritten.
“a" Open for appending data to the end of the file.
“rb” Open for reading binary data.
“wb" Open for writing binary data.

You also have to have necessary permissions from the operating
system to access the files.

BTW: the mode defaults to reading, so open(file) is equivalent
to open(file, "r")

CS303E Slideset 11a: 10 Files

Closing the File

General form:
fileHandle.close()

All files are closed by the OS when your program terminates. Still,
it is very important to close any file you open in Python.

o the file will be locked from access by any other program while
you have it open;

o items you write to the file may be held in internal buffers
rather than written to the physical file;

o if you have a file open for writing, you can't read it until you
close it, and re-open for reading;

o it's just good programming practice.

CS303E Slideset 11a: 11 Files

Modes r+ and w+

| didn't realize this until recently, but you actually can have a file
open for both reading and writing simultaneously, using mode r+
and w+.

However, it's pretty dangerous to do so, because writing occurs
where the file pointer is, which may be at the start of the file.

It's easy to overwrite the file contents. Don’t use these modes
in this class.

CS303E Slideset 11a: 12 Files

Reading/Writing a File

There are various Python functions for reading data from or
writing data to a file, given the file handle in variable h.

Function Description

h.read() Return entire remaining contents of file as a string.
h.read(k) Return next k characters from the file as a string.
h.readline() Return the next line as a string.

h.readlines() Return all remaining lines in the file as a list of strings.

h.write(str) Write the string to the file.

These functions advance an internal file pointer that indicates
where in the file you're reading/writing. open sets it at the
beginning of the file.

CS303E Slideset 11a: 13 Files

Use readlines, not read

Students have a tendency to use read on the contents of a file,
because you already know how to manipulate strings. In general,
don’t do that!

A file can be many megabytes long
and you don’t want to create a string
that long.

Instead use readline to read the file
line by line (unless you know the file
is very small.

That's much more scalable; it doesn't
really matter how long the file is.

CS303E Slideset 11a: 14 Files

Testing File Existence

Sometimes you need to know whether a file exists, otherwise you
may overwrite an existing file. Use the isfile function from the
os.path module.

>>> import os.path
>>> os.path.isfile("slideslla-files.pdf")
True

>>> os.path.isfile("slideslla-files.png")
False

Here the filepath given is relative to the current directory.

CS303E Slideset 11a: 15 Files

Let's Take a Break

THVIEFOR A
= BREAK

,

Example: Read Lines from File

import os.path

def main():
""" Count lines in file.
Does the file exist?
if not os.path.isfile("gettysburg-address"):
print ("File does mnot exist")
return
Open file for input
gaFile = open("gettysburg-address", "r")

lineCount = 0
line = gaFile.readline() # read the first line, if any
while line: # line is not empty string
lineCount += 1
print (format (lineCount, "34"), ": ", \
line.strip(), sep= "")
line = gaFile.readline ()
print ("\nFound", lineCount, "lines.")

gaFile.close ()

main ()

CS303E Slideset 11a: 17 Files

Example: Read Lines from File

> 1s gettysburg-address
gettysburg-address
> wc gettysburg-address
21 278 1475 gettysburg-address
> python ReadFile.py
1: Four score and seven years ago our fathers brought
forth on this
2: continent, a new nation, conceived in Liberty, and
dedicated to the

21: freedom -- and that government of the people, by the
people, for the
22: people, shall not perish from the earth.

Found 22 lines.

CS303E Slideset 11a: 18 Files

Example: Write File

Recall our earlier example to generate and print a multiplication up
to LIMIT. Below is the code to write the table to a file MTable.

LIMIT = 13

def main():
""" Print a multiplication table to LIMIT - 1. """
outfile = open("MTable", "w")
outfile.write("Multiplication Table".center \
(6 + 4 x (LIMIT - 1)) + "\n")
Display the number title
outfile.write (" ")
for j in range(1l, LIMIT):
outfile.write(format (j, "4d"))
outfile.write("\n") # jump to a new line
outfile.write("------ " 4+ M"----"x (LIMIT - 1) + "\n")

Code continues next slide.

CS303E Slideset 11a: 19 Files

Example: Write File

Continued from previous slide.

Display table body
for i in range(1l, LIMIT):
outfile.write(format(i, "3d") + " |[")
for j in range (1, LIMIT):
Display the product and align properly
outfile.write(format(ix*j, "44"))
outfile.write("\n")
outfile.close ()

There are some major differences between print and write:

Q print inserts a newline at the end of each line, unless you ask
it not to. write does not do that.

Q print takes an arbitrary number of arguments and coerces
them all to strings; write only takes one argument and it
must be a string.

CS303E Slideset 11a: 20 Files

Example: Write File

> python MultiplicationTable2.py
> cat MTable
Multiplication Table
| 1 2 3 4 5 6 7 8 9 10 11 12
11 1 2 3 4 5 6 7 8 9 10 11 12
2 | 2 4 6 8 10 12 14 16 18 20 22 24
3 | 3 6 9 12 15 18 21 24 27 30 33 36
4 | 4 8 12 16 20 24 28 32 36 40 44 48
5 | 5 10 15 20 25 30 35 40 45 50 55 60
6 | 6 12 18 24 30 36 42 48 54 60 66 72
71 7 14 21 28 35 42 49 656 63 70 77 84
8 | 8 16 24 32 40 48 56 64 72 80 88 96
9 | 9 18 27 36 45 54 63 72 81 90 99 108
10 | 10 20 30 40 50 60 70 80 90 100 110 120
11 | 11 22 33 44 55 66 77 88 99 110 121 132
12 | 12 24 36 48 60 72 84 96 108 120 132 144

CS303E Slideset 11a: 21 Files

Example: Reading One File, Writing Another

import os.path

def CopyFile():
""" Copy contents from filel to file2. """
Ask user for filenames
f1 = input("Source filename: ").strip()
f2 = input("Target filename: ").strip()
Check if target file exists.
if os.path.isfile(£2):
print(£f2 + " already exists")
return
Open files for input and output
infile = open(f1, "r")
outfile = open(f2, "w")
Copy from input to output a line at a time
for line in infile:
outfile.write(line)
Close both files
infile.close ()
outfile.close ()

CopyFile ()

CS303E Slideset 11a: 22 Files

Running CopyFile

Here 1s and cat are Linux/MacOS commands to list files and
display the contents of a file, respectively.

> 1s HelloWorld.py

HelloWorld. py

> cat HelloWorld.py

print ("Hello, World!")

> 1s NewHelloWorld.py

1s: cannot access ’NewHelloWorld.py’: No
such file or directory

> python CopyFile.py

Source filename: HelloWorld.py

Target filename: NewHelloWorld.py

> cat NewHelloWorld.py

print ("Hello, World!")

CS303E Slideset 11a: 23 Files

Example: Reading and Writing File

It's dangerous to simultaneously read and write a file in Python.
However, you can write a file, close it, and re-open it for reading.

In file WriteReadNumbers.py:

from random import randint

def main():
""" Write 100 random integers to a file, read them
back, and print them, 10 per line. """
Open file for writing

outfile = open("RandomNumbers.txt", "w")

Write 100 random integers in [0 .. 99] to file

for i in range (100):
outfile.write(str(randint (0, 99)) + " ")

outfile.close ()

Code continues on next slide.

CS303E Slideset 11a: 24 Files

Example: Reading and Writing File

Continued from previous slide.

Re-open the file for reading
infile = open("RandomNumbers.txt",

We know this is a small file.

string = infile.read ()

Split string into numbers.
numbers = [int(x) for x in string.
onLine = 0

Print them 10 per line.

for num in numbers:
print (format (num, "2d"), end =
onLine += 1

if onLine == 10:
print ()
onLine = 0

infile.close ()

nru)

This will read the entire file into string.

split () 1]

" u)

CS303E Slideset 11a: 25 Files

Reading and Writing File

> python WriteReadNumbers.py
93 0 48 62 77 84 14 36 99 83
90 46 48 27 27 40 87 87 86 15
72 4 28 48 78 70 90 96 27 97
43 73 40 26 96 93 54 61 13 22
82 66 95 35 56 95 18 54 26 90
63 79 5 26 43 12 49 86 22 90
77 84 66 97 75 35 27 74 75 1
72 2 55 17 12 63 73 89 3 71
81 39 43 46 19 99 45 31 39 35
38 47 56 64 84 31 63 81 4 38

CS303E Slideset 11a: 26 Files

Append Mode

Opening a file in append mode "a", means that writing a value to
the file appends it at the end of the file.

It does not overwrite the
previous content of the file.

You might use this to maintain
a log file of transactions on an
account.

New transactions are added at
the end, but all transactions
are recorded.

CS303E Slideset 11a: 27 Files

Next stop: Tuples, sets and dictionaries.

CS303E Slideset 11a: 28 Files

