
CS303E: Elements of Computers
and Programming

Recursion

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: November 17, 2023 at 11:17

CS303E Slideset 12: 1 Recursion

Factorial Function

Consider the factorial function:

k! = 1 ∗ 2 ∗ . . . ∗ k.

This is often defined mathematically by the following recurrence
relation:

1! = 1
n! = n ∗ (n − 1)!, for n > 1

What assumptions are being made about the input?

We say that this definition is recursive because in defining the
factorial function we’re using the factorial function.

It is typically quite easy to implement a function in Python directly
from the recurrence relation.

CS303E Slideset 12: 2 Recursion

Factorial Function

1! = 1
n! = n ∗ (n − 1)!, for n > 1

For example, to compute 5! we do the following:

5! = 5 ∗ 4! (1)
= 5 ∗ (4 ∗ 3!) (2)
= 5 ∗ (4 ∗ (3 ∗ 2!)) (3)
= 5 ∗ (4 ∗ (3 ∗ (2 ∗ 1!))) (4)
= 5 ∗ (4 ∗ (3 ∗ (2 ∗ 1))) (5)
= 5 ∗ (4 ∗ (3 ∗ 2)) (6)
= 5 ∗ (4 ∗ 6) (7)
= 5 ∗ 24 (8)
= 120 (9)

CS303E Slideset 12: 3 Recursion

Factorial Function

CS303E Slideset 12: 4 Recursion

Factorial Function

Mathematical definition:

1! = 1
n! = n ∗ (n − 1)!, for n > 1

Here’s a straightforward implementation in Python.
def fact (n):

""" Factorial function . """
if n == 1:

return 1
else:

return n * fact(n -1) # note recursive call

This function is recursive because it calls itself.

Can you see anything wrong with this? How might you fix it?

CS303E Slideset 12: 5 Recursion

Python Factorial Function

How should you deal with an illegal input, say fact(0)?

You can do everything you do for non-recursive functions:
1 Assume the input will be legal (and crash if it’s not).
2 Print an error message and return.
3 Use Python error handling; we haven’t covered that this

semester!
4 Return a reasonable default answer.

def fact (n):
""" Factorial function . """
if n <= 1:

return 1
else:

return n * fact(n -1) # note recursive call

CS303E Slideset 12: 6 Recursion

Python Factorial Function

How should you deal with an illegal input, say fact(0)?

You can do everything you do for non-recursive functions:
1 Assume the input will be legal (and crash if it’s not).
2 Print an error message and return.
3 Use Python error handling; we haven’t covered that this

semester!
4 Return a reasonable default answer.

def fact (n):
""" Factorial function . """
if n <= 1:

return 1
else:

return n * fact(n -1) # note recursive call

CS303E Slideset 12: 7 Recursion

Recursion
In programming, recursion just means that a program calls itself,
either directly or indirectly.

Functions A and B are mutually recursive if A calls B and B calls A.
def isNonnegativeEven (n):

print ("In isNonnegativeEven (", n, ")")
if (n < 0):

return False
elif (n == 0):

return True
else:

return isNonnegativeOdd (n - 1)

def isNonnegativeOdd (n):
print ("In isNonnegativeOdd (", n, ")")
if (n < 1):

return False
elif (n == 1):

return True
else:

return isNonnegativeEven (n - 1)

CS303E Slideset 12: 8 Recursion

Mutual Recursion

>>> isNonnegativeOdd (13)
In isNonnegativeOdd (13)
In isNonnegativeEven (12)
In isNonnegativeOdd (11)
In isNonnegativeEven (10)
In isNonnegativeOdd (9)
In isNonnegativeEven (8)
In isNonnegativeOdd (7)
In isNonnegativeEven (6)
In isNonnegativeOdd (5)
In isNonnegativeEven (4)
In isNonnegativeOdd (3)
In isNonnegativeEven (2)
In isNonnegativeOdd (1)
True
>>>

There could be a cycle of three or more functions: A calls B, B
calls C, C calls A. And so on!

CS303E Slideset 12: 9 Recursion

Recursive Thinking

Recursion is also a way of thinking about computing problems:
Solve a “big” problem by solving “smaller” instances of the same
problem. The simplest instances can be solved directly.

Example: Suppose I decide to walk to the store.

Base case: I’m already there; there’s nothing
left to do.

Recursive case: I take one step; now I’ve
reduced the problem to the
“smaller” but structurally
identical problem of walking from
where I am now to the store.

CS303E Slideset 12: 10 Recursion

Recursive Thinking

What can go wrong:
1 I don’t know how to take a step.
2 I walk in the wrong direction.
3 There is no store.
4 You walk to the wrong store.
5 I can’t recognize when I get to the store.
6 I walk right past the store and keep going

forever.

CS303E Slideset 12: 11 Recursion

Recursion

Any recursive function must have:
one or more base cases that return an answer without calling
the procedure recursively;
one or more recursive cases that call the function on
arguments that move the computation in the direction of
some base case;
assurance that you will eventually hit one of the base cases.

def fact (n):
if n <= 1: # the base case

return 1
else:

return n * fact(n -1) # the recursive case

How do you know that this eventually terminates?

CS303E Slideset 12: 12 Recursion

Some Faulty Examples

def factBad (n):
return n * factBad (n - 1)

def isEven (n):
if n == 0:

return True
else:

return isEven (n - 2)

What’s wrong and how would you fix these?

CS303E Slideset 12: 13 Recursion

Recursive Thinking: Counting in a List

Example: Suppose you want to count the number of items in a list.

What’s the base case? What’s the simplest list you can think of?

An empty list! How many items are in an empty list?

BTW: what’s wrong with saying “a list with one element”?

CS303E Slideset 12: 14 Recursion

Recursive Thinking: Counting in a List

Example: Suppose you want to count the number of items in a list.

What’s the base case? What’s the simplest list you can think of?
An empty list! How many items are in an empty list?

BTW: what’s wrong with saying “a list with one element”?

CS303E Slideset 12: 15 Recursion

Recursive Thinking: Counting in a List

If we’re not in the base case, then what do we know?

We know that our input list has at least one
element in it! But we still don’t know how
many.

But we could figure that out if we only had
the solution to a slightly simpler problem:
Suppose we knew how many items were in a
list that was one shorter.

Then we’d be done. Why?

BTW, what is a list that is just our original list L with one element
missing? That’s just L[1:].

CS303E Slideset 12: 16 Recursion

Recursive Thinking: Counting in a List

If we’re not in the base case, then what do we know?

We know that our input list has at least one
element in it! But we still don’t know how
many.

But we could figure that out if we only had
the solution to a slightly simpler problem:
Suppose we knew how many items were in a
list that was one shorter.

Then we’d be done. Why?

BTW, what is a list that is just our original list L with one element
missing? That’s just L[1:].

CS303E Slideset 12: 17 Recursion

Recursive Thinking: Counting in a List

Problem: how many items are in a list L?
Base case: If L is empty, length is 0.

Recursive case: Assume I know the length of L[1:], and use that to
compute the length of L. How?

def countItemsInList (L):
""" Recursively count the number of items in list. """
if not L: # empty list counts as False

return 0
else:

return 1 + countItemsInList (L[1:])

>>> l1 = [1, 2, 3, "red", 2.9]
>>> countItemsInList (l1)
5

Does this work for any list?

CS303E Slideset 12: 18 Recursion

What’s Actually Happening?

I instrumented the code to print out an “execution trace.”
def countItems2 (lst , k):

if not lst:
print (" 1 +"*k, "+ 0 =")
return 0

else:
print (" 1 +"*k, "1 + countItems (", lst [1:] , ") =")
return 1 + countItems2 (lst [1:] , k+1)

>>> lst = [4, 5, 2, 5, 9, 2, 8]
>>> countItems2 (lst , 0)

1 + countItems ([5, 2, 5, 9, 2, 8]) =
1 + 1 + countItems ([2, 5, 9, 2, 8]) =
1 + 1 + 1 + countItems ([5, 9, 2, 8]) =
1 + 1 + 1 + 1 + countItems ([9, 2, 8]) =
1 + 1 + 1 + 1 + 1 + countItems ([2, 8]) =
1 + 1 + 1 + 1 + 1 + 1 + countItems ([8]) =
1 + 1 + 1 + 1 + 1 + 1 + 1 + countItems ([]) =
1 + 1 + 1 + 1 + 1 + 1 + 1 + 0 =

7

CS303E Slideset 12: 19 Recursion

It Seems Like Magic, but It’s Not

CS303E Slideset 12: 20 Recursion

Let’s Take a Break

CS303E Slideset 12: 21 Recursion

Recursive Thinking: Some Examples

Example: how can you sum a list of numbers?
Base case: If L is empty, the sum is 0.

Recursive case: If I knew the sum of L[1:], then I could compute
the sum of L. How?

def sumItemsInList (L):
""" Recursively sum the items in a list. """
if not L: # empty list counts as False

return 0
else:

return L[0] + sumItemsInList (L[1:])

>>> lst = [5, 6, 14, -3, 0, -70]
>>> sumItemsInList (lst)
-48

CS303E Slideset 12: 22 Recursion

Recursive Thinking: Some Examples
Example: how can you count the occurrences of key in list L?

Base case: If L is empty, the count is 0.
Recursive case: If L starts with key, then it’s 1 plus the count in

the rest of the list; otherwise, it’s just the count in
the rest of the list.

def countOccurrencesInList (key , L):
""" Recursively count the occurrences of key in L. """
if not L: # empty list counts as False

return 0
elif key == L[0]:

return 1 + countOccurrencesInList (key , L[1:])
else:

return countOccurrencesInList (key , L[1:])

>>> lst = [5, 6, 14, -3, 0, -70, 6]
>>> countOccurrencesInList (3, lst)
0
>>> countOccurrencesInList (6, lst)
2

CS303E Slideset 12: 23 Recursion

Recursive Thinking: Some Examples

Example: how can you reverse a list L?
Base case: If L is empty, the reverse is [].

Recursive case: If L is not empty, remove the first element and
append it to end of the reverse of the rest.

def reverseList (L):
""" Recursively reverse a list. """
if not L: # empty list counts as False

return []
else:

return reverseList (L[1:]) + [L[0]]

>>> lst = [1, 5, "red", 2.3 , 17]
>>> print (reverseList (lst))
[17 , 2.3 , ’red ’, 5, 1]

CS303E Slideset 12: 24 Recursion

Recursive Thinking: Some Examples

How would Jason do this recursively?
COUNT = 500
STRING = "I will not throw paper airplanes in class ."

def blackboard (n):
if n <= 0: # base case

return
else:

print (STRING) # recursive case
blackboard (n - 1)

blackboard (COUNT)

CS303E Slideset 12: 25 Recursion

Recursive Thinking: Some Examples
An algorithm that dates from Euclid finds the greatest common
divisor of two positive integers:

gcd(a, b) = a, if a = b
gcd(a, b) = gcd(a, b − a), if a < b
gcd(a, b) = gcd(a − b, b), if b < a

def gcd(a, b):
""" Euclid ’s algorithm for GCD. """
print (" Computing gcd(", a, ",", b, ")")
if a < b:

return gcd(a, b-a)
elif b < a:

return gcd(a-b, b)
else:

print (" Found gcd:", a)
return a

print ("gcd(68, 119) =", gcd(68, 119))

What is assumed about a and b? What is the base case? The
recursive cases?

CS303E Slideset 12: 26 Recursion

Running GCD

> python gcd.py
Computing gcd(68 , 119)
Computing gcd(68 , 51)
Computing gcd(17 , 51)
Computing gcd(17 , 34)
Computing gcd(17 , 17)
gcd(68, 119) = 17

CS303E Slideset 12: 27 Recursion

Some Exercises for You to Try

1 Write a recursive function to append two lists.
2 Write a recursive version of linear search in a list.
3 Write a recursive version of binary search in a list.
4 Write a recursive function to sum the digits in a decimal

number.
5 Write a recursive function to check whether a string is a

palindrome.

It’s probably occurred to you that many of these problems were
already solved with built in Python methods or could be solved
with loops.

That’s true, but our goal is to teach you to think recursively!

CS303E Slideset 12: 28 Recursion

Helper Functions

For some recursive solutions you’ll need a helper function.

For example, remember binary search from slideset 10.
def BinarySearch (lst , key):

""" Search for key in sorted list lst. """
low = 0
high = len(lst) - 1
while (high >= low):

mid = (low + high) // 2
if key < lst[mid]:

high = mid - 1
elif key == lst[mid]:

return mid
else:

low = mid + 1
What ’s true here? Why this value ?
return (-low - 1)

It’s clear how to think of this recursively.

CS303E Slideset 12: 29 Recursion

Binary Search

Here’s one version:
def BinarySearchRecursive (lst , key):

""" Search for key in sorted list lst. """
if lst == []:

return False
mid = (len(lst) - 1) // 2
if key == lst[mid]:

return True
elif key < lst[mid]:

return BinarySearchRecursive (lst [: mid], key)
else:

return BinarySearchRecursive (lst[mid +1:] , key)

CS303E Slideset 12: 30 Recursion

Recursive Binary Search

>>> from BinarySearch import *
>>> lst = [2, 4, 7, 9, 10, 12, 14, 17, 20]
>>> BinarySearchRecursive (lst , 10)
True
>>> BinarySearchRecursive (lst , 11)
False
>>> BinarySearchRecursive (lst , 21)
False

This is inferior to the iterative version for at least two reasons:
1 it creates a new copy of half of the list in each recursive call

(by slicing);
2 it returns a Boolean rather than an index. Can you see why

returning an index would be difficult?

A better approach would be to preserve the original list and add
some parameters to the recursive function. This is often done with
a helper function.

CS303E Slideset 12: 31 Recursion

Recursive Binary Search with Helper

def BinarySearchHelper (lst , key , low , high):
if low > high:

return -low - 1

mid = (low + high) // 2
if key == lst[mid]:

return mid
elif key < lst[mid]:

return BinarySearchHelper (lst , key , low , mid - 1)
else:

return BinarySearchHelper (lst , key , mid + 1, high)

def BinarySearchRecursive2 (lst , key):
""" Search for key in sorted list lst. """
low = 0
high = len(lst) - 1
return BinarySearchHelper (lst , key , low , high)

Compare the helper to the nonrecursive version.

CS303E Slideset 12: 32 Recursion

Running It

>>> from BinarySearch import *
>>> lst = [2, 4, 7, 9, 10, 12, 14, 17, 20]
>>> BinarySearchRecursive2 (lst , 21)
-10
>>> BinarySearchRecursive2 (lst , 11)
-6
>>> BinarySearchRecursive2 (lst , 10)
4

CS303E Slideset 12: 33 Recursion

Why Helper Functions

Typically, we need a helper function because we need some extra
information in the recursive calls. But, that information isn’t
needed for the “public call” to the function.

For example: For BinarySearchHelper, you need the low and high
parameters to tell you which part of the list you’re searching in this
particular recursive call.

But for the top level call to BinarySearch, those parameters would
always be 0 and len(lst). So why have those parameters on the top
level function.

CS303E Slideset 12: 34 Recursion

Let’s Take a Break

CS303E Slideset 12: 35 Recursion

Recursion vs. Iteration

For some problems a recursive solution is simpler to code and to
understand than an iterative solution.

You can always convert a recursive solution to an iterative solution,
and vice versa. But it may not be easy!

def gcdIter (a, b):
""" Iterative version of GCD. """
while a != b:

if a < b:
b = b - a

elif b < a:
a = a - b

return a

CS303E Slideset 12: 36 Recursion

The Overhead of Recursion

Though recursion is a wonderful conceptual tool, it’s not free.
There is a cost to any recursive implementation.

Consider the computation of the nth Fibonacci number.

F (0) = 0
F (1) = 1
F (n) = F (n − 1) + F (n − 2), for n ≥ 2

Some of the Fibonacci Numbers:
n 0 1 2 3 4 5 6 7 8 9 10 11

F (n) 0 1 1 2 3 5 8 13 21 34 55 89

BTW: often the sequence is started at 1 rather than at 0.

CS303E Slideset 12: 37 Recursion

Fibonacci in Python

F (0) = 0
F (1) = 1
F (n) = F (n − 1) + F (n − 2), for n ≥ 2

def fib(n):
""" Return nth Fibonacci number . """
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib(n -1) + fib(n -2)

This is a very nice transcription of the recurrence relation and
works fine. Sort of. What’s wrong and how would you fix it?

CS303E Slideset 12: 38 Recursion

How Bad Is It?

If n is 0 or 1, you only make one call to fib. But suppose n = 5,
you do a lot of work, much of it repeated multiple times.

How many recursive calls are made?

CS303E Slideset 12: 39 Recursion

Counting Calls

How many calls to fib are made for a given n?

The recurrence relation for this is:

C(0) = 1
C(1) = 1
C(n) = 1 + C(n − 1) + C(n − 2), for n ≥ 2

We can easily write a Python function to compute this:
def fibCountCalls (n):

if n == 0:
return 1

elif n == 1:
return 1

else:
return 1 + fibCountCalls (n -1) + fibCountCalls (n -2)

CS303E Slideset 12: 40 Recursion

How Many Calls

>>> fibTallyCalls (20)
i: 0 fib(i): 0 calls : 1
i: 1 fib(i): 1 calls : 1
i: 2 fib(i): 1 calls : 3
i: 3 fib(i): 2 calls : 5
i: 4 fib(i): 3 calls : 9
i: 5 fib(i): 5 calls : 15
i: 6 fib(i): 8 calls : 25
i: 7 fib(i): 13 calls : 41
i: 8 fib(i): 21 calls : 67
i: 9 fib(i): 34 calls : 109
i: 10 fib(i): 55 calls : 177
i: 11 fib(i): 89 calls : 287
i: 12 fib(i): 144 calls : 465
i: 13 fib(i): 233 calls : 753
i: 14 fib(i): 377 calls : 1219
i: 15 fib(i): 610 calls : 1973
i: 16 fib(i): 987 calls : 3193
i: 17 fib(i): 1597 calls : 5167
i: 18 fib(i): 2584 calls : 8361
i: 19 fib(i): 4181 calls : 13529

CS303E Slideset 12: 41 Recursion

Instrumenting the Code

This computes fib(n) and keeps track of how long the
computation takes and how many recursive calls are made.
import time

def fibCaller ():
while True:

n = int(input (" Input an integer (negative to exit): "))
if n < 0:

break
Time the call
tStart = time. clock (); ans = fib(n); tEnd = time. clock ()
interval = tEnd - tStart
intervalStr = format (interval , "9.4f")
How many recursive calls ?
calls = fibCountCalls (n)
print ("fib(" + str(n) +") = " + str(ans), end = "")
print (" with " + str(calls) + " recursive calls ")
print ("time = " + intervalStr + " seconds to execute ")

CS303E Slideset 12: 42 Recursion

The Computation

You can see that the values go up quickly.
>>> fibCaller ()
Input an integer (negative to exit): 10
fib (10) = 55 with 177 recursive calls
time = 0.0000 seconds to execute
Input an integer (negative to exit): 20
fib (20) = 6765 with 21891 recursive calls
time = 0.0053 seconds to execute
Input an integer (negative to exit): 30
fib (30) = 832040 with 2692537 recursive calls
time = 0.2702 seconds to execute
Input an integer (negative to exit): 40
fib (40) = 102334155 with 331160281 recursive calls
time = 31.0691 seconds to execute

< I tried it for 50 but got tired of waiting >
Input an integer (negative to exit): -10

CS303E Slideset 12: 43 Recursion

Can We Do Better?

Take another look at the initial values of the Fibonacci sequence:

n 0 1 2 3 4 5 6 7 8 9 10 11
F (n) 0 1 1 2 3 5 8 13 21 34 55 89

Surely we can do better than our horrible exponential solution.
Perhaps instead of computing backwards from n down to 0, we can
compute forwards from 0 to n.

CS303E Slideset 12: 44 Recursion

A Better Implementation

n 0 1 2 3 4 5 6 7 8 9 10 11
F (n) 0 1 1 2 3 5 8 13 21 34 55 89

def fibHelper (k, limit , ans , ansSub1):
if k >= limit :

return ans
else:

return fibHelper (k+1, limit , ans + ansSub1 , ans)

def fibBetter (n):
return fibHelper (1, n, 1, 0)

Why was the fibHelper function needed?

CS303E Slideset 12: 45 Recursion

Better Performance
After changing fibCaller to call fibBetter:
>>> fibBetterCaller ()
Input an integer (negative to exit): 10
fib (10) = 55 with 10 recursive calls
time = 0.0000 seconds to execute
Input an integer (negative to exit): 20
fib (20) = 6765 with 20 recursive calls
time = 0.0000 seconds to execute
Input an integer (negative to exit): 30
fib (30) = 832040 with 30 recursive calls
time = 0.0000 seconds to execute
Input an integer (negative to exit): 40
fib (40) = 102334155 with 40 recursive calls
time = 0.0000 seconds to execute
Input an integer (negative to exit): 500
fib (500) =

139423224561697880139724382870407283950070256587697307
264108962948325571622863290691557658876222521294125 with 500

recursive calls
time = 0.0004 seconds to execute
Input an integer (negative to exit): -10
>>>

CS303E Slideset 12: 46 Recursion

Better Performance
Is there any limit to how big an argument we can give? Yes,
because the runtime stack will overflow when we reach the
“recursion depth.”

>>> fibBetterCaller ()
Input an integer (negative to exit): 900
fib (900) =

5487710883948000005141367394838371444380051930912359272
4494953427039811201064341234954387521525390615504949092187
4412182466791047314424730220139801604070070171756973179004
83275246652938800 with 900 recursive calls
time = 0.0007 seconds to execute
Input an integer (negative to exit): 1000
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
< some lines omitted >

[Previous line repeated 993 more times]
File "/u/ byoung / cs303e / slides / RecursionExamples .py", line

73, in fibHelper
if k >= limit :

RecursionError : maximum recursion depth exceeded in
comparison

CS303E Slideset 12: 47 Recursion

Iterative Version

You can replace the recursive code by iterative code (i.e., a loop)
and you won’t have this problem. Try this as an exercise.
>>> iterativeFib (5000)
38789684543883256337019163083259053120821277146462451061605
97214895550139044037097010822916462210669479293452858882973
81348310200895498294036143015691147893836421656394410691021
45056341337065586562382546567007125259299038549338139288363
78347518908762970712033337052923107693008518093849801803847
81399674888176555465378829164426891298038461377896902150229
30824756663462249230718833248032803750391303529033045058427
01147635242270210934637699104006714174883298422891491273104
05432875329804427367682297724498774987455569190770388063704
68327948113589737399931101062193081490185708153978543791953
05617510761053075688783766033667355445258844886241619210553
45749367589784902798823435102359984466393485325641195222185
95630604753646454707603309024208063825849291564528762915757
59142343809142302917491088984155209854432486594079793571316
84169286803954530954538869811466508206686289742063932343848
84652409887423958738019769938203171742089322654688793640026
30797780058759129671389634214252579116872755600360311370547
754724604639987588046985178408674382863125

CS303E Slideset 12: 48 Recursion

Closed Form Solution

It turns out that there is a closed form solution for the nth
Fibonacci number.

fib (n) = (1/
√

5)[(1 +
√

5)/2]n − (1/
√

5)[(1−
√

5)/2]n.

So you don’t even have to loop!

CS303E Slideset 12: 49 Recursion

Let’s Take a Break

CS303E Slideset 12: 50 Recursion

Naturally Recursive Problems

Some problems (like Fibonacci) have a very natural recursive
solution, but can easily be recoded in a non-recursive fashion.

Some other problems are very difficult to solve in any way but
recursively.

CS303E Slideset 12: 51 Recursion

Towers of Hanoi

The Towers of Hanoi consists of three pegs and a number of disks
of different sizes that can slide onto any peg. The puzzle starts
with the disks neatly stacked in order of size on one peg, the
smallest at the top.

CS303E Slideset 12: 52 Recursion

Towers of Hanoi

The objective of the puzzle is to move the entire stack to another
peg, obeying the following rules:

Only one disk may be moved at a time.
No disk may be placed on top of a smaller disk

This is a problem which is easy to solve recursively, but very hard
to solve iteratively.

CS303E Slideset 12: 53 Recursion

The Legend

There is a legend about a
Vietnamese temple which
contains a large room with three
time-worn posts in it holding 64
golden disks. The priests of
Hanoi, acting out the command
of an ancient prophecy, have
been moving these disks, in
accordance with the rules of the
puzzle, for centuries.

According to the legend, when
the last move of the puzzle is
completed, the world will end.
Are we in danger?

CS303E Slideset 12: 54 Recursion

The Legend

The smallest solution for 64 disks
requires:
18,446,744,073,709,551,615
moves.

If the priests were able to move
disks at a rate of one per second,
using the smallest number of
moves, it would take them
264 − 1 seconds or roughly 600
billion years.

CS303E Slideset 12: 55 Recursion

Thinking Recursively

Problem: Move n disks from peg A to peg C, using peg B as the
intermediate peg.

1 What’s the base case?
2 What are the recursive cases?

CS303E Slideset 12: 56 Recursion

Towers of Hanoi

What problem are we solving? Solving the puzzle means moving
the disks from the start state to the ending state, while following
the rules.

Our program is solving a slightly different problem: print out a
legal list of moves that will take us from start state to end state.

So, what’s a move?
def makeMove (peg1 , peg2):

print ("Move disk from " + peg1 + " to " + peg2)

CS303E Slideset 12: 57 Recursion

Towers of Hanoi

Our main function has four parameters:
n : how many disks to move (int);
A : the start peg (str);
B : the intermediate peg (str);
C : the destination peg (str).

def towersOfHanoi (n, A, B, C):
""" Prints a list of legal moves to solve

the Tower of Hanoi problem for n disks . """
if n == 1:

makeMove (A, C)
else:

towersOfHanoi (n-1, A, C, B)
makeMove (A, C)
towersOfHanoi (n-1, B, A, C)

CS303E Slideset 12: 58 Recursion

Calling It

>>> towersOfHanoi (4, ’A’, ’B’, ’C’)
Move disk from A to B # \
Move disk from A to C # \
Move disk from B to C # \
Move disk from A to B # Hanoi (3, A, C, B)
Move disk from C to A # /
Move disk from C to B # /
Move disk from A to B # /
Move disk from A to C # move (A, C)
Move disk from B to C # \
Move disk from B to A # \
Move disk from C to A # \
Move disk from B to C # Hanoi (3, B, A, C)
Move disk from A to B # /
Move disk from A to C # /
Move disk from B to C # /

>>>

CS303E Slideset 12: 59 Recursion

How Many Moves

def towersOfHanoi (n, frm , using , to):
""" Prints a list of legal moves to solve

the Tower of Hanoi problem for n disks . """
if n == 1:

makeMove (frm , to)
else:

towersOfHanoi (n-1, frm , to , using)
makeMove (frm , to)
towersOfHanoi (n-1, using , frm , to)

It’s pretty clear that the number of moves (and recursive calls) is
defined by:

M(1) = 1
M(n) = 1 + 2 ∗M(n − 1), for n > 1

But this has solution:

M(n) = 2n − 1

CS303E Slideset 12: 60 Recursion

How Many Calls?
The number of moves is also the number of recursive calls.

>>> for i in range (0, 64, 5):
... print (format (i, "3d"), \
... format (towersMoveCount (i), "20d"))
...

0 0
5 31

10 1023
15 32767
20 1048575
25 33554431
30 1073741823
35 34359738367
40 1099511627775
45 35184372088831
50 1125899906842623
55 36028797018963967
60 1152921504606846975

>>>

If there are so many recursive calls, why doesn’t the program
crash?

CS303E Slideset 12: 61 Recursion

Next stop: Turtle Graphics.

CS303E Slideset 12: 62 Recursion

