
CS303E: Elements of Computers
and Programming

More Simple Python

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: September 15, 2023 at 14:19

CS303E Slideset 3: 1 More Simple Python

Common Python Functions

A function is a group of statements that performs a specific task.
You’ll be writing your own functions soon, but Python also
provides many functions for your use.

Function Description
abs(x) Return the absolute value
max(x1, x2, ...) Return the largest arg
min(x1, x2, ...) Return the smallest arg
pow(a, b) Return ab, same as a ** b
round(x) Return integer nearest x;

rounds to even
round(x, b) Returns the float rounded

to b places after the decimal

CS303E Slideset 3: 2 More Simple Python

Common Functions

>>> abs(2)
2
>>> abs(-2) # absolute value
2
>>> max(1, 4, -3, 6)
6
>>> min(1, 4, -3, 6)
-3
>>> pow(2, 10) # same as 2**10
1024
>>> pow(2, -2) # same as 2**(-2)
0.25
>>> round (5.4)
5
>>> round (5.5) # round to even
6
>>> round (6.5) # round to even
6
>>> round (5.466 , 2) # set precision
5.47

CS303E Slideset 3: 3 More Simple Python

Python Libraries

There are also many available functions that are not in the Python
“core” language. These are available in libraries.

os interact with the operating system
(e.g., change directory)

math access special math functions such as
log(), sin(), sqrt(), pi

random random number generation
datetime clock and calendar functions

To use the functions/constants from a library you have to import
it.

CS303E Slideset 3: 4 More Simple Python

Import Examples

>>> import os # import module os
>>> os.name # what ’s my OS?
’posix ’
>>> os. getcwd () # get current working directory
’/u/ byoung / cs303e / slides ’
>>> import random # import module random
>>> random . random () # generate random value
0.36552104405513963 # between 0 and 1
>>> random . random () # do it again
0.7465680663361102
>>> import math # import module math
>>> math.sqrt(1000) # square root of 1000
31.622776601683793
>>> math.pi # approximation of pi
3.141592653589793
>>> import datetime # import module datetime
>>> print (datetime . datetime .now ()) # current time
2022 -06 -03 08:40:38.276299

CS303E Slideset 3: 5 More Simple Python

Some Functions in the math Library

floor(x) returns the largest integer no bigger than x
ceil(x) returns the smallest integer no less than x
exp(x) exponential function ex

log(x) natural logarithm (log to the base e of x)
log(x, b) log to the base b of x
sqrt(x) square root of x

Trigonometric functions, including:

sin(x) sine of x
asin(x) arcsine (inverse sine) of x
degrees(x) convert angle x from radians to degrees
radians(x) convert angle x from degrees to radians

CS303E Slideset 3: 6 More Simple Python

Functions from the math Library

>>> import math
>>> math. floor (3.2)
3
>>> math.ceil(3.2)
4
>>> math.exp(2) # e ** 2
7.38905609893065
>>> math.log(7.389) # log base e
1.9999924078065106
>>> math.log(1024 , 2) # log base 2
10.0
>>> math.sqrt(1024)
32.0
>>> math.sin(math.pi)
1.2246467991473532e -16
>>> math.sin(90)
0.8939966636005579
>>> math. degrees (math.pi) # pi radians is 180 deg.
180.0
>>> math. radians (180) # 180 deg. is pi radians
3.141592653589793

CS303E Slideset 3: 7 More Simple Python

Example Using Math Functions
In file ComputeAngles.py:
""" Given the three vertices of a triangle , compute and
display the three sides and three angles ."""

import math
Our three vertices are (1, 1) , (6.5 , 1) and (6.5 , 2.5)
x1 = 1
y1 = 1
x2 = 6.5
y2 = 1
x3 = 6.5
y3 = 2.5

This computes the lengths of the three sides :
a = math.sqrt ((x2 - x3) ** 2 + (y2 - y3) ** 2)
b = math.sqrt ((x1 - x3) ** 2 + (y1 - y3) ** 2)
c = math.sqrt ((x1 - x2) ** 2 + (y1 - y2) ** 2)

This prints the three sides :
print ("The three sides have lengths : ", round (a, 2) , \

round (b, 2) , round (c, 2))

Continues on the next slide .

CS303E Slideset 3: 8 More Simple Python

Example Using Math Functions

In file ComputeAngles.py:
Continues from previous slide .

This computes the three angles :
A = math. degrees (math.acos ((a**2 - b**2 - c**2) / (-2*b*c)))
B = math. degrees (math.acos ((b**2 - a**2 - c**2) / (-2*a*c)))
C = math. degrees (math.acos ((c**2 - b**2 - a**2) / (-2*a*b)))

This prints the three angles :
print ("The three angles are ", round (A * 100) / 100.0 , \

round (B * 100) / 100.0 , round (C * 100) / 100.0)

> python ComputeAngles .py
The three sides have lengths : 1.5 5.7 5.5
The three angles are 15.26 90.0 74.74

This example is from Listing 3.2 in the book, but without eval or
input.

CS303E Slideset 3: 9 More Simple Python

Random Numbers

Several useful functions are defined in the random module.
randint(a,b) : return a random integer between a and b,

inclusively.
randrange(a, b) : return a random integer between a and b-1,

inclusively.
random() : return a random float in the range [0 . . . 1).

CS303E Slideset 3: 10 More Simple Python

Random Numbers: Examples
Note: You need to specify the module, even after you import it.
There’s a way around that; we’ll give you that later.

>>> import random
>>> random . randint (0, 9) # same as randrange (0, 10)
8
>>> random . randint (0, 9)
3
>>> random . randrange (0, 10) # same as randint (0, 9)
2
>>> random . randrange (0, 10)
0
>>> random . randrange (0, 10)
3
>>> random . random ()
0.689013943338249
>>> random . random ()
0.5466061134029843

It’s often useful to generate random values to test your programs
or to perform scientific experiments.

CS303E Slideset 3: 11 More Simple Python

Random Floats: Scaling
Suppose you needed a random float between 0 and 100:
>>> random . random () * 100
63.90818900268016
>>> random . random () * 100
19.090419531785873
>>> random . random () * 100
4.8139113372750675

Or between 600 and 1000:
>>> random . random () * 400 + 600
921.05464024715
>>> random . random () * 400 + 600
824.1866143790331
>>> random . random () * 400 + 600
676.7450442494322

CS303E Slideset 3: 12 More Simple Python

Aside on Import

There are several different ways to use import.

>>> import random # imports module , not names
>>> random ()
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : ’module ’ object is not callable
>>> random . random ()
0.46714522525882873
>>> from random import random # import name random
>>> random ()
0.9893720304830842
>>> randint (0, 9) # but no others from module
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
NameError : name ’randint ’ is not defined
>>> from random import * # import all names in module
>>> randint (0, 9)
5

CS303E Slideset 3: 13 More Simple Python

Let’s Take a Break

CS303E Slideset 3: 14 More Simple Python

Strings and Characters

A string is a sequence of characters. Python treats strings and
characters in the same way.

letter = ’A’ # same as letter = "A"
numChar = ’4’
msg = "Good morning "

Notice that you can use single quotes or double quotes, but they
must match.

(Many) characters are represented in memory by binary strings,
called the ASCII (American Standard Code for Information
Interchange) encoding.

CS303E Slideset 3: 15 More Simple Python

ASCII

The following is part of the ASCII (American Standard Code for
Information Interchange) representation for characters.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
32 ! ” # $ % & ’ () * + , - . /
48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
64 @ A B C D E F G H I J K L M N O
80 P Q R S T U V W X Y Z [\] ∧
96 ‘ a b c d e f g h i j k l m n o
112 p q r s t u v w x y z { — }

The standard ASCII table defines 128 character codes (from 0 to
127), of which, the first 32 are control codes (non-printable), and
the remaining 96 character codes are representable characters.

CS303E Slideset 3: 16 More Simple Python

Strings and Characters

A string is represented in memory by a sequence of ASCII
character codes. So manipulating characters really means
manipulating these numbers in memory.

... ...

... ...
2000 01001010 Encoding for character ’J’ (74)
2001 01100001 Encoding for character ’a’ (97)
2002 01110110 Encoding for character ’v’ (118)
2003 01100001 Encoding for character ’a’ (97)

... ...

... ...

Note that a string is probably stored internally as a pointer to the
first character and a length. Most of the time, we don’t care!

CS303E Slideset 3: 17 More Simple Python

Unicode

ASCII codes are only 7 bits (some are extended to 8 bits). 7 bits
only allows 128 characters. There are many more characters than
that in the world.

Unicode is an extension to ASCII that uses multiple bytes for
character encodings. With Unicode you can have Chinese
characters, Hebrew characters, emojis, etc.

Unicode was defined such that ASCII is a subset. So Unicode
readers recognize ASCII.

CS303E Slideset 3: 18 More Simple Python

Operating on Characters
Notice that:

The lowercase letters have consecutive ASCII values
(97...122); so do the uppercase letters (65...90).
The uppercase letters have lower ASCII values than the
uppercase letters, so “less” alphabetically.
There is a difference of 32 between any lowercase letter and
the corresponding uppercase letter.

To convert a letter from upper to lower,
add 32 to the ASCII value.

To convert a letter from lower to upper,
subtract 32 from the ASCII value.

To sort characters/strings, sort their
ASCII representations.

CS303E Slideset 3: 19 More Simple Python

ord and chr
Two useful functions for characters:

ord(c) : give the ASCII code for character c; returns a
number.

chr(n) : give the character with ASCII code n; returns a
character.

>>> ord(’a’) # ascii code for ’a’
97
>>> ord(’A’) # ascii code for ’A’
65
>>> diff = (ord(’a’) - ord(’A’))
>>> diff
32
>>> upper = ’R’
>>> lower = chr(ord(upper) + diff) # upper to lower
>>> lower
’r’
>>> lower = ’m’
>>> upper = chr(ord(lower) - diff) # lower to upper
>>> upper
’M’

CS303E Slideset 3: 20 More Simple Python

Escape Characters
Some special characters wouldn’t be easy to include in strings,
e.g., single or double quotes.
>>> print ("He said: " Hello "")

File "<stdin >", line 1
print ("He said: " Hello "")

ˆ
SyntaxError : invalid syntax

What went wrong?

To include these in a string, we need an escape sequence.

Escape Escape
Sequence Name Sequence Name

\b backspace \r carriage return
\t tab \\ backslash
\n newline \’ single quote
\f formfeed \" double quote

>>> print("He said: \" Hello \"")
He said: "Hello"

CS303E Slideset 3: 21 More Simple Python

Printing without a Newline

Our previous examples using the print function always added a
newline at the end.
>>> print("abc")
abc
>>>

You can print without the implicit newline using the end parameter
(good for staying on the same line).
>>> print("abc", end = "")
abc >>> print("abc", end = ’xyz\n’)
abcxyz
>>>

Note that print(x) is equivalent to print(x, end=’\n’).

CS303E Slideset 3: 22 More Simple Python

Printing with Different Separation

By default, print separates arguments with a space.
>>> print (1, 2, 3, 4)
1 2 3 4
>>> print("abc", "def")
abc def

You can override that behavior using the sep parameter.
>>> print (1, 2, 3, 4, sep="")
1234
>>> print("abc", "def", sep="xyz")
abcxyzdef
>>> print (8, 5, 2020 , sep="/")
8/5/2020

print(x, y) is equivalent to print(x, y, sep=" ").

CS303E Slideset 3: 23 More Simple Python

Keyboard Input

The input() function is used to read data from the user during
program execution.

General form:
input (<prompt string >)

When it’s called:
It prints the prompt string to the terminal. This is the
message to tell the user to enter some input.
It waits until the user types something and hits “Enter” or
“Return.”
It reads in what the user typed as a string.

If you don’t show the prompt string, it may not be obvious to your
user that user input is expected.

CS303E Slideset 3: 24 More Simple Python

Input Example

>>> input("Enter a number : ")
Enter a number : 32
’32’
>>> numEntered = input("Enter a number : ")
Enter a number : 32
>>> numEntered + 1
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : must be str , not int
>>> int(numEntered) + 1
33

Notice that the error happened because we tried to add a str to
an integer.

Remember that keyboard input is always read as a str. You can
interpret that string as an integer by using the int function.

CS303E Slideset 3: 25 More Simple Python

Exercise

Try to rewrite our earlier program that computes the sides and
angles of a triangle. Use input statements to accept the six vertex
coordinates from the user.

CS303E Slideset 3: 26 More Simple Python

Let’s Take a Break

CS303E Slideset 3: 27 More Simple Python

String Concatenation

The “+” operator can be used to concatenate two strings:
>>> msg1 = "My name is Bill "
>>> msg2 = " Young"
>>> msg1 + msg2
’My name is Bill Young ’
>>> msg3 = "Good night"
>>> msg3 += " and good luck!"
>>> msg3
’Good night and good luck!’

Here “+” is actually shorthand for a method (function) associated
with the str object class. More on classes later.

CS303E Slideset 3: 28 More Simple Python

Some Uses of “+”

Note that “+” is overloaded, meaning that this same syntax is
used for multiple purposes. The Python interpreter must figure out
what you meant.
>>> 123 + 456 # add two ints
579
>>> 12.3 + 45.6 # add two floats
57.900000000000006 # notice approximation
>>> "123" + "456" # "add" two strings
’123456 ’
>>> 123 + "456" # add int and str
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : unsupported operand type(s) for +: ’int ’ and ’str ’

Python doesn’t define “+” to have meaning in the last case, but
you could if you wanted to!

CS303E Slideset 3: 29 More Simple Python

Formatting

Note that print() automatically coerces each argument to a str
value.
>>> print(19.2 , -20, "abc")
19.2 -20 abc

Often you’d like to print numbers and strings nicely (fixed width,
certain precision, right or left justified). Use the format function.

General Form:

format (value, format-string)

This generates a str representation of value formatted as
indicated by the format-string.

CS303E Slideset 3: 30 More Simple Python

Formatting: Floats
To specify a format for a float, give a format string including:

1 field width: overall width of the resulting string
2 precision: number of digits after the decimal point

For example, the format string "10.2f", means to create a string
representing a float (the “f”) right justified in a field of width 10,
with 2 digits after the decimal point.
>>> format (123.456789 , "10.2f")
’ 123.46 ’
>>> format (123456.7891234 , "8.3f")
’123456.789 ’
>>> format (123 , "8.3f")
’ 123.000 ’

Notice that if the field is not wide enough for the value, it is
expanded. What would format(123.456), "0.2f") return?

CS303E Slideset 3: 31 More Simple Python

Formatting: Floats

If you want to ensure that you print the right number of digits,
format is your function.

This usually comes up if you need to display trailing zeros:
>>> x = 12.4005
>>> print(round (x, 2))
12.4
>>> print(format (x, ".2f"))
12.40
>>>

round is about generating a rounded number; format is about
generating a string representation to display:

CS303E Slideset 3: 32 More Simple Python

Formatting: Floats

You can also format floats in scientific notation or as percentages.
>>> format (123.45678 , "10.2e")
’ 1.23e+02 ’
>>> format (123.45678 , "10.2%")
’ 12345.68% ’
>>> format (0.000123 , "10.2e")
’ 1.23e -04 ’
>>> format (0.000123 , "10.2%")
’ 0.01% ’

And you can left justify in the field:
>>> format (0.000123 , " <10.2%")
’0.01% ’
>>> format (123.45678 , " <10.2e")
’1.23e+02 ’

CS303E Slideset 3: 33 More Simple Python

Formatting: Ints

You can format an integer in decimal, hexadecimal, octal, or
binary. You can also specify a field width.

>>> format (10000 , "10d") # base 10
’ 10000 ’
>>> format (10000 , "10x") # base 16
’ 2710 ’
>>> format (10000 , "10o") # base 8
’ 23420 ’
>>> format (10000 , "10b") # base 2
’10011100010000 ’

Again, you can left justify:
>>> format (10000 , " <10d")
’10000 ’

CS303E Slideset 3: 34 More Simple Python

Formatting: Strings

For strings, you can specify a width. Strings are left justified by
default. You can right justify with “>”.
>>> format ("Hello , world!", "20s")
’Hello , world! ’
>>> format ("Hello , world!", "5s")
’Hello , world!’
>>> format ("Hello , world!", " >20s")
’ Hello , world!’

If the width is too short, the field is expanded; it’s assumed that
the data being displayed is more important than the format.

CS303E Slideset 3: 35 More Simple Python

Putting It All Together

Let’s design a program to input names, midterm and final exam
grades for three students, compute the average for each and print
the results out in a nice table.

In file ExamExample.py:
def main ():

""" Input the names of three students with two exam
grades for each , compute their test average , and
print in table form."""

Enter info for Student1
name1 = input (" Enter the first student ’s name: ")
midterm1 = int(input (" Enter " + name1 + \

"\’s midterm grade : "))
final1 = int(input (" Enter " + name1 + \

"\’s final exam grade : "))

< Do the same for the other two students . >
Continues on next slide .

CS303E Slideset 3: 36 More Simple Python

Putting It All Together

Continues from previous slide .
Now , we print the table :

Print header :
print ("\ nName MT FN Avg")
print (" ----------------------------")

Student1
avg1 = (midterm1 + final1) / 2
print (format (name1 , "10s"), format (midterm1 , "4d"), \

format (final1 , "4d"), format (avg1 , "7.2f"))

< Do the same for the other two students . >

main ()

CS303E Slideset 3: 37 More Simple Python

Running Our Program

> python ExamExample .py
Enter the first student ’s name: Charlie
Enter Charlie ’s midterm grade : 90
Enter Charlie ’s final exam grade : 75

Enter the second student ’s name: Susie
Enter Susie ’s midterm grade : 60
Enter Susie ’s final exam grade : 80

Enter the third student ’s name: Frank
Enter Frank ’s midterm grade : 8
Enter Frank ’s final exam grade : 77

Name MT FN Avg

Charlie 90 75 82.50
Susie 60 80 70.00
Frank 8 77 42.50

CS303E Slideset 3: 38 More Simple Python

Next stop: Selections.

CS303E Slideset 3: 39 More Simple Python

