
CS303E: Elements of Computers
and Programming

Loops

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: February 27, 2024 at 11:18

CS303E Slideset 5: 1 Loops



Repetitive Activity

Often we need to do some (program) activity numerous times:

CS303E Slideset 5: 2 Loops



Using Loops

So you might as well use cleverness to do it. That’s what loops are
for.

It doesn’t have to be the exact same thing over and over.

CS303E Slideset 5: 3 Loops



While Loop

One way is to use a while loop.

General form:
while condition:

statement(s)

Meaning: as long as the
condition remains true, execute
the statements.

As usual, all of the statements
in the body must be indented
the same amount.

CS303E Slideset 5: 4 Loops



While Loop

In file WhileExample.py:
COUNT = 500
STRING = "I will not throw paper airplanes in class ."

def main ():
""" Print STRING COUNT times . """
i = 0
while (i < COUNT ):

print ( STRING )
i += 1

main ()

> python WhileExample .py
I will not throw paper airplanes in class .
I will not throw paper airplanes in class .

...
I will not throw paper airplanes in class .

CS303E Slideset 5: 5 Loops



Another While Example

Compute N! = 1× 2× . . . N, the factorial of N.
In file fact2.py:
def factorial ():

""" Compute the factorial of a number supplied
by the user. """
num = int( input (" Compute factorial of: "))
ans = 1
i = 1
# Do we know that this loop terminates ?
while ( i <= num ):

ans *= i
i += 1

print (" Factorial of", num , "is", ans)

factorial ()

> python fact2 .py
Compute factorial of: 17
Factorial of 17 is 355687428096000
>

CS303E Slideset 5: 6 Loops



Infinite Loops

You have to do something in the loop
to ensure that you eventually exit;
otherwise, you’ll be in an infinite loop.

Either:
change some variable so that the test eventually becomes
False, or
break out of the loop on some condition that eventually
occurs.

CS303E Slideset 5: 7 Loops



Another Example: Sum to N

def sumToN ():
# Accept input from the user until a positive integer
# is entered .
while True:

n = int( input ("Sum to what positive integer : "))
if n < 1:

print ("That ’s not positive . Try again !")
else:

# This will exit the loop
break

# What must be true here?
# Sum the numbers up to n
sum = 0
i = n
while i > 0:

sum += i
i -= 1

print ("The numbers to", n, "sum to", sum)

sumToN ()

Do we know that both loops terminate? Why?

CS303E Slideset 5: 8 Loops



Another Example: Sum to N

Here’s running our program:
> python sumToN .py
Sum to what positive integer : -4
That ’s not positive . Try again !
Sum to what positive integer : 0
That ’s not positive . Try again !
Sum to what positive integer : 10
The numbers to 10 sum to 55
>

Would this program work if the user entered a float?

CS303E Slideset 5: 9 Loops



While Loop Example: Test Primality

An integer is prime if it has no
positive integer divisors except 1 and
itself.

To test whether an arbitrary integer n
is prime, see if any number in
[2 ... n-1], divides it.

You couldn’t do that in straight line code without knowing n in
advance. Why not?

Even then it would be really tedious if n is very large.

CS303E Slideset 5: 10 Loops



isPrime Loop Example

In file IsPrime.py:
def main ():

""" See if an integer entered is prime . """
# Can you spot the inefficiencies in this?
num = int( input (" Enter an integer : ") )
isPrime = True
if ( num < 2 ):

isPrime = False
elif ( num == 2 ):

isPrime = True
else:

divisor = 2
while ( divisor < num ):

# Keep repeating this block until condition
# becomes false (or we break out of the loop).
if ( num % divisor == 0 ):

isPrime = False
break

else:
divisor += 1

print (num , "is prime " if isPrime else "is not prime ")

CS303E Slideset 5: 11 Loops



isPrime Loop Example

> python IsPrime .py
Enter an integer : 53
53 is prime
> python IsPrime .py
Enter an integer : 54
54 is not prime

It works, though it’s pretty inefficient. If a number is prime, we
test every possible divisor in [2 ... n-1].

We don’t actually need the special test for 2. Think about
why that is.
There’s no need to test any even divisor except 2. Why not?
If n is not prime, it will have a divisor less than or equal to

√
n.

CS303E Slideset 5: 12 Loops



A Better Version: IsPrime2.py

In file IsPrime2.py:
import math

def main ():
""" See if an integer entered is prime . """
num = int( input (" Enter an integer : ") )

isPrime = True
if ( num % 2 == 0 ):

# If num is even , then it ’s prime only if (num == 2)
isPrime = ( num == 2 )

else:
divisor = 3 # Why 3?
while ( divisor <= math.sqrt( num )):

if ( num % divisor == 0 ):
isPrime = False
break # exit from loop

else:
divisor += 2 # Why 2?

print (num , "is", " prime " if isPrime else "not prime ")

CS303E Slideset 5: 13 Loops



The Better isPrime Version

> python IsPrime2 .py
Enter an integer : 2
2 is prime
> python IsPrime2 .py
Enter an integer : 53
53 is prime
> python IsPrime2 .py
Enter an integer : 54
54 is not prime
> python IsPrime2 .py
Enter an integer : 997
997 is prime

Notice that IsPrime does 995 divisions to discover that 997 is
prime. IsPrime2 only does 16. Why?

CS303E Slideset 5: 14 Loops



Example While Loop: Approximate Square Root
Approximate the square root of a positive integer as follows:

In file GuessSqrt.py:
def main ():

""" Approximate the square root of a positive integer ."""
num = 0
while (num <= 0):

num = int( input (" Enter a positive integer : ") )
if (num <= 0):

print ( "Try again " )

# Iterate by increments of 0.1 until we find an
# approximate square root ( within 0.1).
guess = 0.1
while ( guess ** 2 < num ):

guess += 0.1

sqrt = guess
print ( "The square root of ", num , "is approximately ", \

format ( sqrt , "4.1f") )

main ()

CS303E Slideset 5: 15 Loops



Running the Example

> python GuessSqrt .py
Enter a positive integer : -20
Try again
Enter a positive integer : 20
The square root of 20 is approximately 4.5
> python GuessSqrt .py
Enter a positive integer : 1024
The square root of 1024 is approximately 32.0
> python GuessSqrt .py
Enter a positive integer : 100
The square root of 100 is approximately 10.1

Notice that the last one isn’t quite right. The square root of 100 is
exactly 10.0. Foiled again by the approximate nature of floating
point arithmetic.

How would you change the code to get an approximation within
0.01?

CS303E Slideset 5: 16 Loops



Let’s Take a Break

CS303E Slideset 5: 17 Loops



For Loop

In a for loop, you typically know how many times you’ll execute.

General form:
for var in sequence:

statement(s)

Meaning: assign each element
of sequence in turn to var and
execute the statements.

As usual, all of the statements
in the body must be indented
the same amount.

CS303E Slideset 5: 18 Loops



Loop Variable

for var in sequence:
statement(s)

var is called the loop variable or sometimes the indicial variable. It
takes on successive values from the sequence in successive
iterations of the loop.

>>> for i in [1, 2, 4, 8, 16, 32, 64]:
... print (i)
...
1
2
4
8
16
32
64
>>>

CS303E Slideset 5: 19 Loops



What’s a Sequence?

A Python sequence holds multiple items stored one after another.

>>> seq = [2, 3, 5, 7, 11, 13] # a list

The range function is a good way to generate a sequence.
range(a, b) : denotes the sequence a, a+1, ..., b-1.

range(b) : is the same as range(0, b).
range(a, b, c) : generates a, a+c, a+2c, ...., b’, where

b’ is the last value < b.

Actually, range() doesn’t really return a sequence, but rather a
special type of immutable object that supplies a value on demand.
Don’t worry about this!

CS303E Slideset 5: 20 Loops



Range Examples

>>> for i in range (3, 6): print (i, end=" ")
...
3 4 5 >>> for i in range (3): print (i, end=" ")
...
0 1 2 >>> for i in range (0, 11, 3): print (i, end=" ")
...
0 3 6 9 >>> for i in range (11 , 0, -3): print (i, end=" ")
...
11 8 5 2 >>>

Why is it printing strangely?

CS303E Slideset 5: 21 Loops



Loop Example

Remember this one?

How would you do this with a for loop in Python?

CS303E Slideset 5: 22 Loops



Loop Example

In file ForExample.py:
COUNT = 500
STRING = "I will not throw paper airplanes in class ."

def main ():
for i in range ( COUNT ):

print ( STRING )

main ()

> python ForExample .py
I will not throw paper airplanes in class .
I will not throw paper airplanes in class .

...
I will not throw paper airplanes in class .

Notice that the variable i isn’t used in the loop body; it’s only for
counting in this example. Does it print the right number of lines?

CS303E Slideset 5: 23 Loops



Another For Loop Example

Suppose you want to print a table of the powers of 2 up to 2n.

In file PowersOf2.py:
def main ():

""" Print a table of powers of 2 up to n,
where n is entered by the user. """

num = int( input (" Enter an integer : ") )

for power in range (num + 1):
print ( format ( power , "3d"), \

format ( 2 ** power , "8d" ) )

Why does the range go to num + 1?

CS303E Slideset 5: 24 Loops



For Loop Example

> python PowersOf2 .py
Enter an integer : 15

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024
11 2048
12 4096
13 8192
14 16384
15 32768

CS303E Slideset 5: 25 Loops



Break and Continue

Two useful commands in loops (while or for) are:
break: exit the loop (but continue the program);

continue: exit the current iteration, but continue with the loop.

while (True):
value = float ( input ( " Enter a number , or 0 to exit: " ))
if ( value == 0 ):

break
# When will the following happen ?
< process value >

while (True):
value = int( input ( " Enter a non - negative integer : " ))
if ( value < 0):

continue
# When will the following happen ?
< process value >

What’s the problem with this loop?

CS303E Slideset 5: 26 Loops



Nested Loops

The body of while loops and for loops contain arbitrary
statements, including other loops.

Suppose we want to compute and print out a multiplication table
like the following:

Multiplication Table
| 1 2 3 4 5 6 7 8 9

------------------------------------------
1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18
3 | 3 6 9 12 15 18 21 24 27
4 | 4 8 12 16 20 24 28 32 36
5 | 5 10 15 20 25 30 35 40 45
6 | 6 12 18 24 30 36 42 48 54
7 | 7 14 21 28 35 42 49 56 63
8 | 8 16 24 32 40 48 56 64 72
9 | 9 18 27 36 45 54 63 72 81

CS303E Slideset 5: 27 Loops



Multiplication Table

Multiplication Table
| 1 2 3 4 5 6 7 8 9

------------------------------------------
1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18

....
9 | 9 18 27 36 45 54 63 72 81

Here’s an algorithm to do this:
1 How many columns/rows in the table?
2 Print the header information.
3 For each row i:

1 Print i.
2 For each column j: compute and print (i * j).
3 Go to the next row.

This is easily coded using nested for loops.

CS303E Slideset 5: 28 Loops



Nested Loops
Print the header:

Multiplication Table
| 1 2 3 4 5 6 7 8 9

------------------------------------------

In file MultiplicationTable.py:
# Defines the size of the table + 1.
LIMIT = 10

def main ():
""" Print a multiplication table to LIMIT - 1. """
print (" Multiplication Table ")
# Display the column headers .
print (" |", end = "")
for j in range (1, LIMIT ):

print ( format (j, "4d"), end = "")
print () # jump to a new line
# Print line to separate header from body of the table .
print (" ------------------------------------------")

CS303E Slideset 5: 29 Loops



Nested Loops

This continues our multiplication example.

1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18

....
9 | 9 18 27 36 45 54 63 72 81

# Display table body
for row in range (1, LIMIT ):

print ( format (row , "3d"), "|", end = "")
for col in range (1, LIMIT ):

# Display the product and align properly
print ( format ( row*col , "4d"), end = "")

print ()

main ()

CS303E Slideset 5: 30 Loops



Nested Loops Example

> python MultiplicationTable .py
Multiplication Table

| 1 2 3 4 5 6 7 8 9
------------------------------------------

1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18
3 | 3 6 9 12 15 18 21 24 27
4 | 4 8 12 16 20 24 28 32 36
5 | 5 10 15 20 25 30 35 40 45
6 | 6 12 18 24 30 36 42 48 54
7 | 7 14 21 28 35 42 49 56 63
8 | 8 16 24 32 40 48 56 64 72
9 | 9 18 27 36 45 54 63 72 81

Notice that if you want a bigger or smaller table, you only have to
change LIMIT in the code. But what would be wrong?

CS303E Slideset 5: 31 Loops



Nested Loops Example

Notice that if you want a bigger or smaller table, you only have to
change LIMIT in the code. But what would be wrong?

Suppose we set LIMIT = 5?

> python MultiplicationTable .py
Multiplication Table

| 1 2 3 4
------------------------------------------

1 | 1 2 3 4
2 | 2 4 6 8
3 | 3 6 9 12
4 | 4 8 12 16

CS303E Slideset 5: 32 Loops



Next stop: Functions.

CS303E Slideset 5: 33 Loops


