
CS303E: Elements of Computers
and Programming

Functions

Dr. Bill Young
Department of Computer Science

University of Texas at Austin
© William D. Young, All rights reserved.

Last updated: August 27, 2024 at 14:25

CS303E Slideset 6: 1 Functions

Functions

You probably remember functions from your high school math
classes:

f (x) = x2 + 2

This defines a recipe for performing a computation. It has a
parameter x , which doesn’t have a value but stands for any
number you want to put there.

Notice that the definition doesn’t perform a computation. It only
tells you how to perform one. Namely, given any specific value for
x , square it and add 2.

Thus, f (5) equals 27, because (substituting 5 for x in our rule),

f (5) = 52 + 2 = 27

CS303E Slideset 6: 2 Functions

Functions

Notice several things:
The function definition doesn’t perform a computation; it only
gives us a recipe or procedure for performing a computation.
A function call (e.g., f (5)) does perform a computation, using
the defining rule.
To actually compute something, we need to call the function,
supplying values for the parameters.
The computed value is “returned” to the calling environment
replacing the call with the value.

f (3) + f (2) = (32 + 2) + (22 + 2) = 11 + 6 = 17

Functions in programming languages work similarly, with a few
differences.

CS303E Slideset 6: 3 Functions

What is a Function?

CS303E Slideset 6: 4 Functions

User-Defined Functions

We’ve seen lots of system-defined functions; now it’s time to define
our own.

General form:

def functionName(list of parameters): # header
statement(s) # body

Meaning: a function definition defines a block of code that
performs a specific task. It can reference any of the variables in the
list of parameters. It may or may not return a value.

The parameters are formal parameters; they stand for arguments
passed to the function later.

CS303E Slideset 6: 5 Functions

Functions

CS303E Slideset 6: 6 Functions

Calling a Function

CS303E Slideset 6: 7 Functions

Function Example

Suppose you want to sum the integers 1 to n.

In file functionExamples.py:
def sumToN (n):

""" Sum the integers from 1 to n. """
sum = 0 # identity element for +
for i in range (1, n + 1): # Why n+1?

sum += i
Hand the answer to the calling environment .
return sum

CS303E Slideset 6: 8 Functions

Function Example

Notice that the definition defines a function to perform the task,
but doesn’t actually perform the task. We still have to call/invoke
the function with specific arguments.

>>> from functionExamples import *
>>> sumToN (10)
55
>>> sumToN (1000)
500500
>>> sumToN (1000000)
500000500000

You can think of the function call as being replaced by the value
returned.

You can call a function as many times as you need.

CS303E Slideset 6: 9 Functions

Some Observations

def sumToN (n): # function header
.... # function body

Here n is a formal parameter. It is used in the definition as a place
holder for an actual parameter (e.g., 10 or 1000) in any specific
call.

For a specific value of x, sumToN(x) returns an int value,
meaning that a call to sumToN can be used anyplace an int
expression can be used.
>>> print (sumToN (50))
1275
>>> ans = sumToN (30)
>>> print (ans)
465
>>> print ("Even" if sumToN (3) % 2 == 0 else "Odd")
Even

CS303E Slideset 6: 10 Functions

Functional Abstraction

Once we’ve defined sumToN, we can use it almost as if were a
primitive in the language without worrying about the details of the
definition.

We need to know what it does, but don’t care anymore how it
does it!

This is called information hiding or functional abstraction.

CS303E Slideset 6: 11 Functions

Another Way to Add Integers 1 to N

Suppose later we discover that we could have coded sumToN more
efficiently (as discovered by the 8-year old C.F. Gauss in 1785):
def sumToN (n):

""" Sum the integers from 1 to n. """
return (n * (n+1)) // 2

Because we defined sumToN as a function, we can just swap in this
definition without changing any other code. If we’d done the
implementation in-line, we’d have had to go find every instance
and change it.
>>> sumToN (10)
55
>>> sumToN (1000000000000)
500000000000500000000000

CS303E Slideset 6: 12 Functions

Return Statements

When you execute a return statement, you go back to the calling
environment. You may or may not hand a value back to the caller.

General forms:

return
return expression

A return that doesn’t specify a value actually returns the
constant None.

Every function has an implicit return at the end.
def printTest (x):

print(x)
implicit return here

A return statement can only appear within a function, but you
can have as many as you need.

CS303E Slideset 6: 13 Functions

Return vs. Print

You can think of a Python function as a recipe for performing
some computation. The computation may return a value:
def cube(x):

return x ** 3

If it does, you can think of the value returned as replacing the call
to the function.

cube(3) + cube (2)

is the same as
27 + 8

CS303E Slideset 6: 14 Functions

Return vs. Print

But often a Python function doesn’t return a value (actually
returns the constant None) either always or sometimes.
def cubeNonnegative (x):

if x >= 0:
return x ** 3

else:
print (" Negative argument supplied .")

Notice that this returns an int value for nonnegative arguments but
returns None and prints an error message for negative arguments.

Almost always print an error message; don’t return it. A
caller expecting an int value to be returned probably can’t handle a
string.

The point of an error message is to inform the user that something
went wrong.

CS303E Slideset 6: 15 Functions

Remember: The Framework of a Simple Python Program

Define your program in file
Filename.py:
def main ():

Python statement
Python statement
Python statement

...
Python statement
Python statement
Python statement

main ()

To run it:
> python Filename .py

This defines a function main; could
have a different name.

If you wanted to end the program, you
could include a return statement.

You couldn’t use return if you just had
the statements at the top level.

CS303E Slideset 6: 16 Functions

About return

In file returnExamples.py:
def printSquares ():

""" Compute and print squares until 0 is entered
by the user. """

while True:
num = int(input (" Enter an integer or 0 to exit: "))
if (num != 0): # "if num :" works

print ("The square of", num , "is:", num ** 2)
else:

return # no value is returned

printSquares ()

This doesn’t return a value, but accomplishes it’s purpose by the
“side effect” of printing.

CS303E Slideset 6: 17 Functions

About return

> python returnExamples .py
Enter an integer or 0 to exit: 7
The square of 7 is: 49
Enter an integer or 0 to exit: -12
The square of -12 is: 144
Enter an integer or 0 to exit: 0
>

A function that “doesn’t return a value” actually returns the
constant None.

CS303E Slideset 6: 18 Functions

Some More Function Examples

Suppose we want to multiply the integers from 1 to n:
def multToN (n):

""" Compute the product of the numbers from 1 to n. """
prod = 1 # identity element for *
for i in range (1, n+1):

prod *= i
return prod

Convert fahrenheit to celsius:
def fahrToCelsius (f):
""" Convert fahrenheit temperature value to celsius

using formula : C = 5/9(F -32). """
return 5 / 9 * (f - 32)

Or celsius to fahrenheit:
def celsiusToFahr (c):

""" Convert celsius temperature value to fahrenheit
using formula : F = 9/5 * C + 32. """

return 9 / 5 * c + 32

CS303E Slideset 6: 19 Functions

Fahr to Celsius Table
In slideset 1, we showed the C version of a program to print a table
of Fahrenheit to Celsius values. Here’s a Python version:

In file FahrToCelsius.py:
from functionExamples import fahrToCelsius

def printFahrToCelsius ():
""" Print table fahrenheit to celsius for temp

in [0, 20, 40, ... 300]. """
lower = 0
upper = 300
step = 20
print ("Fahr\ tCelsius ")
for fahr in range (lower , upper + 1, step):

Use an already defined function .
celsius = fahrToCelsius (fahr)
print (format (fahr , "3d"), "\t", \

format (celsius , "6.2f"))
return # not actually necessary

printFahrToCelsius ()

Notice that printFahrToCelsius returns None.
CS303E Slideset 6: 20 Functions

Running the Temperature Program

> python FahrToCelsius .py
Fahr Celsius

0 -17.78
20 -6.67
40 4.44
60 15.56
80 26.67

100 37.78
120 48.89
140 60.00
160 71.11
180 82.22
200 93.33
220 104.44
240 115.56
260 126.67
280 137.78
300 148.89

Exercise: Do a similar problem converting Celsius to Fahrenheit.
CS303E Slideset 6: 21 Functions

Functions Inside Functions

There are occasionally reasons to define one function within
another function. But it’s generally a bad idea, unless you know
what you’re doing.

For this class, always define your functions at the top level of
your .py file.

CS303E Slideset 6: 22 Functions

Let’s Take a Break

CS303E Slideset 6: 23 Functions

A Bigger Example: Print First 100 Primes

Suppose you want to print out a table of the first 100 primes, 10
per line.

You could sit down and write
this program from scratch,
without using functions. But it
would be a complicated mess
(see section 5.8 of the book).

Better to use functional
abstraction: find parts of the
algorithm that can be coded
separately and “packaged” as
functions.

CS303E Slideset 6: 24 Functions

Print First 100 Primes: Algorithm

Here’s some Python-like pseudocode to print 100 primes:

def print100Primes():
primeCount = 0
num = 0
while (primeCount < 100):

if (we’ve already printed 10 on the current line):
go to a new line

nextPrime = (get the next prime > num)
print nextPrime on the current line
num = nextPrime
primeCount += 1

Note that most of this is just straightforward Python
programming! The only “new” part is how to find the next prime.
So we’ll make that a function.

CS303E Slideset 6: 25 Functions

Top Down Development

So let’s assume we can define a function:
def findNextPrime (num):

""" Return the first prime greater
than num. """

< body >

in such a way that it returns the first prime larger than num.

Is that even possible? Is there always a “next” prime larger than
num?

Yes! There are an infinite number of primes. So if we keep testing
successive numbers starting at num + 1, we’ll eventually find the
next prime. That may not be the most efficient way!

CS303E Slideset 6: 26 Functions

Top Down Development

So let’s assume we can define a function:
def findNextPrime (num):

""" Return the first prime greater
than num. """

< body >

in such a way that it returns the first prime larger than num.

Is that even possible? Is there always a “next” prime larger than
num?

Yes! There are an infinite number of primes. So if we keep testing
successive numbers starting at num + 1, we’ll eventually find the
next prime. That may not be the most efficient way!

CS303E Slideset 6: 27 Functions

Value of Functional Abstraction

Notice we’re following a “divide and
conquer” approach: Reduce the solution of
our bigger problem into one or more
subproblems which we can tackle
independently.

It’s also an instance of “information hiding.”
We don’t want to think about how to find
the next prime, while we’re worrying about
printing 100 primes. Put that off!

CS303E Slideset 6: 28 Functions

Next Step
Now solve the original problem, assuming we can write
findNextPrime.
In file IsPrime3.py:
def print100Primes ():

""" Print a table of the first 100 primes ,
10 primes per line. """

primeCount = 0 # primes we ’ve found
onLine = 0 # primes printed on line
num = 0 # need next prime > num
while (primeCount < 100):

Do we stay on current line?
if (onLine >= 10):

print ()
onLine = 0

This is the only thing left to define :
nextPrime = findNextPrime (num)
num = nextPrime
primeCount += 1
print (format (nextPrime , "3d"), end = " ")
onLine += 1

print ()

CS303E Slideset 6: 29 Functions

Looking Ahead

Here’s what the output should look like.
>>> from IsPrime3 import print100Primes
>>> print100Primes ()

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541

Of course, we couldn’t do this if we really hadn’t defined
findNextPrime. So let’s see what that looks like.

CS303E Slideset 6: 30 Functions

How to Find the Next Prime

The next prime (> num) can be found as indicated in the
following pseudocode:

def findNextPrime(num):
if num < 2:

return 2 as the answer
else:

guess = num + 1
while (guess is not prime)

guess += 1
return guess as the answer

Again we solved one problem by assuming the solution to another
problem: deciding whether a number is prime.

Can you think of ways to improve this algorithm?

CS303E Slideset 6: 31 Functions

Here’s the Implementation

Note that we’re assuming we can write:
def isPrime (num):

""" Boolean test for primality . """
< body >

def findNextPrime (num):
""" Find the first prime > num. """
if (num < 2):

return 2
guess = num + 1
while (not isPrime (guess)):

guess += 1
return guess

This works (assuming we can define isPrime), but it’s pretty
inefficient. How could you fix it?

CS303E Slideset 6: 32 Functions

Find Next Prime: A Better Version

When looking for the next prime, we don’t have to test every
number, just the odd numbers (after 2).
def findNextPrime (num):

""" Find the first prime > num. """
if (num < 2):

return 2

If (num >= 2 and num is even), the
next prime after num is at least
(num - 1) + 2, which is odd.
if (num % 2 == 0):

num -= 1
guess = num + 2

while (not isPrime (guess)):
guess += 2

return guess

Now all that remains is to write isPrime.

CS303E Slideset 6: 33 Functions

Is a Number Prime?

We already solved a version of this in slideset 5. Let’s rewrite that
code as a Boolean-valued function:
def isPrime (num):

""" Test whether num is prime . """

Deal with evens and numbers < 2.
if (num < 2 or num % 2 == 0):

return (num == 2) # Why this value ?

See if there are any odd divisors
up to the square root of num.
divisor = 3
while (divisor <= math.sqrt(num)):

if (num % divisor == 0):
return False

else:
divisor += 2

return True

By the way, a Boolean-valued function is often called a predicate.

CS303E Slideset 6: 34 Functions

Testing Our Code

>>> from IsPrime3 import findNextPrime , isPrime
>>> findNextPrime (-10)
2
>>> findNextPrime (2)
3
>>> findNextPrime (1000)
1009
>>> findNextPrime (100000000)
100000007
>>> isPrime (100000007)
True
>>> isPrime (1001)
False
>>> isPrime (1003)
False
>>> isPrime (1007)
False
>>> isPrime (1009)
True

CS303E Slideset 6: 35 Functions

One More Example

Suppose we want to find and print k primes, starting from a given
number:

In file IsPrime3.py:
def findKPrimesStartingFrom (k, num):

""" Find the next k primes bigger than num. """
if (k < 1):

print ("You asked for zero primes !")
else:

for i in range (k):
nextPrime = findNextPrime (num)
print (nextPrime , end=" ")
num = nextPrime

print ()

Notice that we can use functions we’ve defined such as
findNextPrime and isPrime (almost) as if they were Python
primitives.

CS303E Slideset 6: 36 Functions

Running Our Program

>>> from IsPrime3 import findKPrimesStartingFrom
>>> findKPrimesStartingFrom (-10, 100000000)
You asked for zero primes !
>>> findKPrimesStartingFrom (5, -10)
2 3 5 7 11
>>> findKPrimesStartingFrom (10, 100000000)
100000007 100000037 100000039 100000049 100000073 100000081

100000123 100000127 100000193 100000213

CS303E Slideset 6: 37 Functions

Functions and Return Values

Functions can return a value or not. A function that doesn’t return
a value is sometimes called a procedure.

Of the functions defined earlier:
sumToInt, multToN, findNextPrime all return int values
farhToCelsius and celsiusToFahr return float values
isPrime returns a bool value
printSquares, printFahrToCelsius, print100Primes,
and findKPrimesStartingFrom don’t return a value (return
None).

CS303E Slideset 6: 38 Functions

Let’s Take a Break

CS303E Slideset 6: 39 Functions

Positional Arguments

This function has four formal parameters:
def functionName (x1 , x2 , x3 , x4):

< body >

Any call to this function should have exactly four actual arguments,
which are matched to the corresponding formal parameters:

functionName (9, 12, -3, 10)
functionName (’a’, ’b’, ’c’, ’d’)
functionName (2, "xyz", 2.5, [3, 4, 5])

This is called using positional arguments; it’s by far the most
common approach.

CS303E Slideset 6: 40 Functions

Keyword Arguments

It is also possible to use the formal parameters as keywords.
def functionName (x1 , x2 , x3 , x4):

functionBody

These two calls are equivalent:
functionName (’a’, ’b’, ’c’, ’d’)
functionName (x3 = ’c’, x1 = ’a’, x2 = ’b’, x4 = ’d’)

You can list the keyword arguments in any order, but all must still
be specified.

CS303E Slideset 6: 41 Functions

Mixing Keyword and Positional Arguments

You can mix keyword and positional arguments, but must have
positional arguments first in order.
def functionName (x1 , x2 , x3 , x4):

functionBody

functionName (’a’, ’b’, x4 = ’d’, x3 = ’c’) # OK
functionName (x2 = ’b’, x1 = ’a’, ’c’, ’d’) # illegal

Why do you think they make this rule?

CS303E Slideset 6: 42 Functions

Default Parameters

You can also specify default arguments for a function. If you
don’t specify a corresponding actual argument, the default is used.

def printRectangleArea (width = 1, height = 2):
area = width * height
print (" width : ", width , "\ theight : ", height , \

"\ tarea :", area)

printRectangleArea () # use defaults
printRectangleArea (4, 2.5) # positional args
printRectangleArea (height = 5, width = 3) # keyword args
printRectangleArea (width = 1.2) # default height
printRectangleArea (height = 6.2) # default width

CS303E Slideset 6: 43 Functions

Using Defaults

> python RectangleArea .py
width: 1 height : 2 area: 2
width: 4 height : 2.5 area: 10.0
width: 3 height : 5 area: 15
width: 1.2 height : 2 area: 2.4
width: 1 height : 6.2 area: 6.2

Notice that you can mix default and non-default arguments, but
must define the non-default arguments first.
def email (address , message = ""):

CS303E Slideset 6: 44 Functions

Passing by Reference

All values in Python are objects, including numbers, strings, etc.

When you pass an argument to a function, you’re actually passing
a reference (pointer) to the object, not the object itself.

There are two kinds of objects in Python:
mutable: you can change them in your program.

immutable: you can’t change them in your program.

If you pass a reference to a mutable object, it can be changed by
your function. If you pass a reference to an immutable object, it
can’t be changed by your function.

CS303E Slideset 6: 45 Functions

Python Types

Class Description Syntax example
int An immutable fixed precision number of

unlimited magnitude
42

float An immutable floating point number
(system-defined precision)

3.1415927

str An immutable sequence of characters. ’Wikipedia’
”Wikipedia”
”””Spanning
multiple lines”””

bool An immutable truth value True, False
tuple Immutable, can contain mixed types (4.0, ’string’, True)
bytes An immutable sequence of bytes b’Some ASCII’

b”Some ASCII”
list Mutable, can contain mixed types [4.0, ’string’, True]
set Mutable, unordered, no duplicates {4.0, ’string’, True}
dict A mutable group of key and value pairs {’key1’: 1.0, 3: False}

CS303E Slideset 6: 46 Functions

Passing an Immutable Object

Consider the following code:
def increment (x):

x += 1
print (" Within the call x is: ", x)

x = 3
print (" Before the call x is: ", x)
increment (x)
print (" After the call x is: ", x)

def revList (lst):
lst. reverse ()
print (" Within the call lst is: ", lst)

lst = [1, 2, 3]
print (" Before the call lst is: ", lst)
revList (lst)
print (" After the call lst is: ", lst)

CS303E Slideset 6: 47 Functions

Passing Immutable and Mutable Objects

Invoking this code:
>python Test.py
Before the call x is: 3
Within the call x is: 4
After the call x is: 3

Before the call lst is: [1, 2, 3]
Within the call lst is: [3, 2, 1]
After the call lst is: [3, 2, 1]

Notice that the immutable integer parameter to increment was
unchanged, while the mutable list parameter to revList was
changed by the call.

CS303E Slideset 6: 48 Functions

Scope of Variables

Variables defined in a Python program have an associated scope,
meaning the portion of the program in which they are defined.
A global variable is defined outside of a
function and is visible after it is defined. Use
of global variables is generally considered
bad programming practice. Don’t use them
unless you have a very good reason!

A local variable is defined within a function
and is visible from the definition until the
end of the function.
A local definition overrides a global definition.

CS303E Slideset 6: 49 Functions

Overriding

A local definition (locally) overrides the global definition.
x = 1 # x is global

def func ():
x = 2 # this x is local
print(x) # will print 2

func ()
print(x) # will print 1

Running the program:
> python funcy.py
2
1

CS303E Slideset 6: 50 Functions

Global Variables

callCount = 0 # global variable

def caller ():
global callCount # needed to access
callCount += 1

caller ()
print (" callCount = ", callCount)
caller ()
print (" callCount = ", callCount)
caller ()
print (" callCount = ", callCount)

> python Test.py
callCount = 1
callCount = 2
callCount = 3

What would happen if you took out the line containing global?

CS303E Slideset 6: 51 Functions

Returning Multiple Values

The Python return statement can also return multiple values.
Actually, it returns a tuple of values.
def multipleValues (x, y):

return x + 1, y + 1

print (" Values returned are: ", multipleValues (4, 5.2))

x1 , x2 = multipleValues (4, 5.2)
print ("x1: ", x1 , "\tx2: ", x2)

Values returned are: (5, 6.2)
x1: 5 x2: 6.2

You can operate on this using tuple functions, which we’ll cover
later in the semester, or assign them to variables.

CS303E Slideset 6: 52 Functions

Order of Things in a .py File

Python is pretty permissive about the order of things in your .py
file. The following is the order I prefer:

Header / Extended comment explaining
what’s in the file
Any imports required
Program constants
Function definitions
main function definition
Call to main function

Include comments throughout.

CS303E Slideset 6: 53 Functions

Next stop: Objects and Classes.

CS303E Slideset 6: 54 Functions

