
CS303E: Elements of Computers
and Programming

Objects and Classes

Dr. Bill Young
Department of Computer Science

University of Texas at Austin
© William D. Young, All rights reserved.

Last updated: April 17, 2025 at 10:19

CS303E Slideset 7: 1 Objects and Classes

Python and OO

Python is an object-oriented (OO) language. That implies a
certain approach to thinking about problems.

Basic idea: conceptualize any
problem in terms of a collection of
“objects”—data structures consisting
of data fields and methods together
with their interactions.

Programming techniques may include:
data abstraction, encapsulation,
messaging, modularity, polymorphism,
and inheritance. We’ll talk about
some of these later.

CS303E Slideset 7: 2 Objects and Classes

Object Orientation

The basic idea of object oriented
programming (OOP) is to view your
problem as a collection of objects, each
of which has certain state and can
perform certain actions.

Each object has:
some data (attributes) that it maintains characterizing its
current state;
a set of actions (methods) that it can perform (or you can
perform on it).

CS303E Slideset 7: 3 Objects and Classes

Object Orientation

A user interacts with an object by calling its methods; this is called
method invocation. That should be the only way that a user
interacts with an object.

Significant object-oriented languages include Python, Java, C++,
C#, Perl, JavaScript, Objective C, and others.

CS303E Slideset 7: 4 Objects and Classes

OO Paradigm: An Example

Example: A soda machine has:
Attributes: products inside, change available,

amount previously deposited, etc.
Methods: accept a coin, select a product,

dispense a soda, provide change
after purchase, return money
deposited, load products, etc.

CS303E Slideset 7: 5 Objects and Classes

Object Orientation

The programmer interacts with objects by invoking their methods,
which may:

update the state of the object,
ask the object about its current state,
compute some function of the state and externally provided
values,
some combination of these.

Name potential instances of each of these for our Soda Machine
example.

CS303E Slideset 7: 6 Objects and Classes

Class vs. Instance of the Class

In Python, you implement a particular type of object (soda
machine, calculator, etc.) with a class.

The class defines a “type” of
object.

You can then create multiple
objects (instances of the class).

A class is (sort of) like architectural drawing. It tells you how to
construct the building.

An object (instance of the class) is the building created from the
architect’s plan.

CS303E Slideset 7: 7 Objects and Classes

Another OO Example: A Simple Calculator

Imagine that you’re trying to do some simple arithmetic. You need
a Calculator application, programmed in an OO manner. It will
have:

Attributes: the current value of its
accumulator (the value stored and
displayed on the screen).

Methods: things that you can ask it to do:
add a number to the accumulator,
subtract a number, multiply by a
number, divide by a number, zero
out the accumulator value, etc.

CS303E Slideset 7: 8 Objects and Classes

Classes are like Types

Let’s define a class for our simple interactive calculator.

Attribute: the current value of the accumulator.

Methods: all of the following.
clear: zero the accumulator
print: display the accumulator value

add k: add k to the accumulator
sub k: subtract k from the accumulator

mult k: multiply accumulator by k
div k: divide accumulator by k

CS303E Slideset 7: 9 Objects and Classes

A Calculator Class

Below is a (partial) Python implementation of the Calculator class:

In file Calc.py:
class Calc:

""" This is a simple calculator class . It stores and
displays a single number in the accumulator . To that
number , you can add , subtract , multiply or divide ."""

def __init__ (self):
""" Constructor for new Calc objects ,

with display 0. """
self. accumulator = 0

def __str__ (self):
""" Allows print to display accumulator value

in a nice string format ."""
return " Displaying : " + str(self. accumulator)

def getAccumulator (self):
return self. accumulator

Definition of class Calc continues on the next slide.
CS303E Slideset 7: 10 Objects and Classes

A Calculator Class

Continuation of the Calc class:

def clear (self):
self. accumulator = 0

def add(self , num):
self. accumulator += num

def sub(self , num):
...

def mult(self , num):
...

def div(self , num):
...

CS303E Slideset 7: 11 Objects and Classes

Using Our Class

>>> from Calc import * # import from Calc.py
>>> c = Calc () # create a calculator object
>>> print (c) # show its current value
Displaying : 0
>>> c.add(10) # add 10
>>> print (c)
Displaying : 10
>>> c.div(0) # try to divide by 0
Error : division by 0 not allowed .
>>> c.div(2) # divide by 2
>>> print (c)
Displaying : 5.0
>>> c.mult(4) # multiply by 4
>>> print (c)
Displaying : 20.0
>>> c. clear () # clear the state
>>> print (c)
Displaying : 0

Note that it might have been better to have each operation print
the accumulator value. What would you change?

CS303E Slideset 7: 12 Objects and Classes

Let’s Take a Break

CS303E Slideset 7: 13 Objects and Classes

Defining Classes

General Form:

class ClassName:
initializer
methods

This defines a new class (type), which you can instantiate to
create as many objects (instances) as you like.

The class initializer is a special function with name __init__.
When called it supplies values to the class attributes.

The other methods are functions within the class that allow the
world to interact with objects of the class.

CS303E Slideset 7: 14 Objects and Classes

The Circle Class

In file Circle.py:
import math

class Circle :
def __init__ (self , rad = 1):

""" Construct a Circle object with radius
rad (defaults to 1). """

self. radius = rad

def getRadius (self): # getter
return self. radius

def setRadius (self , rad): # setter
self. radius = rad

def getPerimeter (self):
return 2 * math.pi * self. radius

def getArea (self):
return math.pi * (self. radius ** 2)

CS303E Slideset 7: 15 Objects and Classes

Using the Circle Class

>>> from Circle import *
>>> c1 = Circle () # create a new Circle , radius 1
>>> c1. getRadius ()
1
>>> c1. setRadius (5) # reset c1 ’s radius to 5
>>> c1. getRadius ()
5
>>> c1. getArea () # compute its area
78.53981633974483
>>> c1. getPerimeter () # compute its perimeter
31.41592653589793
>>> c2 = Circle (10) # make a new Circle , radius 10
>>> c2. getArea () # get its area
314.1592653589793

CS303E Slideset 7: 16 Objects and Classes

Creating a New Object

Use the class name to create a new object of that class.
class Circle :

def __init__ (self , rad = 1):
""" Construct a Circle object with radius

rad (defaults to 1). """
self. radius = rad

...

>>> c1 = Circle ()
>>> c2 = Circle (5)

The function __init__ is automatically called to initialize the
object and define its attributes (also called its data members).

CS303E Slideset 7: 17 Objects and Classes

Creating a New Object

class Circle :
def __init__ (self , rad = 1):

""" Construct a Circle object with radius
rad (defaults to 1). """

self. radius = rad

...

Notice that __init__ has two parameters:
self : refers to the object just created. It is used within

the class definition, but not outside it.
rad : it wouldn’t make any sense to define a circle

without a radius. It’s an attribute/data member of
the class.

CS303E Slideset 7: 18 Objects and Classes

The Other Methods

...
def getRadius (self):

Return the radius
return self. radius

def getPerimeter (self):
Compute the perimeter
return 2 * math.pi * self. radius

...

The other methods can refer to the class attributes using the dot
notation.

They have self as a parameter at definition. When they are called
on a class instance (object), self is an implicit parameter referring
to the object itself.
>>> c1. getRadius () # self references c1
5
>>> c1. getPerimeter ()
31.41592653589793

CS303E Slideset 7: 19 Objects and Classes

Accessing Attributes

It is (sometimes) possible to directly access the attributes of a
class:

c1 = Circle ()
>>> c1. radius # bad practice
1
>>> c1. getRadius () # better
1

But it’s a bad idea, for two reasons:
1 Anyone can tamper with your class data, including setting it

to illegal values.
2 The class becomes difficult to maintain. Suppose some user

sets the Circle radius to a negative value.

CS303E Slideset 7: 20 Objects and Classes

Accessing Attributes

It’s better to deny direct access to attributes; instead define setters
(or mutators) and getters (or accessors).

def getRadius (self): # getter
return self. radius

def setRadius (self , radius): # setter
self. radius = radius

Even with setters and getters, there’s nothing to prevent code from
accessing attributes directly, unless you make the attribute private.

An attribute beginning with two underscores is private to the class.

CS303E Slideset 7: 21 Objects and Classes

The Circle Class with Private Attributes

import math

class Circle :
Construct a circle object , with radius
a private attribute .
def __init__ (self , rad = 1):

self. __radius = rad

def getRadius (self):
return self. __radius

def setRadius (self , rad):
self. __radius = rad

def getPerimeter (self):
return 2 * math.pi * self. __radius

def getArea (self):
return math.pi * (self. __radius ** 2)

The only access to __radius outside the class is via the getter
and setter methods.

CS303E Slideset 7: 22 Objects and Classes

Code Defensively: Reconsider Circle Setter

Notice that with this setter, there’s nothing to prevent a malicious
or careless user from setting the radius to an illegal value:

def setRadius (self , radius):
self. __radius = radius

This would be better:

def setRadius (self , radius):
if radius > 0:

self. __radius = radius
else:

leave radius unchanged and
print

an error message
print(" Radius must be positive .")

CS303E Slideset 7: 23 Objects and Classes

Private Attributes

>>> from Circle import *
>>> c = Circle (10)
>>> c. getRadius ()
10
>>> c. __radius # violates privacy
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
AttributeError : ’Circle ’ object has no

attribute ’__radius ’
>>> print(c) # didn ’t define __str__
<Circle . Circle object at 0 x7ff32a47e470 >

CS303E Slideset 7: 24 Objects and Classes

Let’s Take a Break

CS303E Slideset 7: 25 Objects and Classes

Everything’s an Object
In Python, everything is an object, even numbers and strings.
Every object has a unique id, accessed with the function id().

You can access the class of any object with the function type().
>>> from Circle import *
>>> c1 = Circle ()
>>> type(c1)
<class ’Circle . Circle ’>
>>> id(c1)
140162312889400
>>> type (7)
<class ’int ’>
>>> id (7)
10914688
>>> type("xyz")
<class ’str ’>
>>> id("xyz")
140162312889488
>>> id (4 + 1)
10914624
>>> id (5)
10914624

CS303E Slideset 7: 26 Objects and Classes

Printing a Class
If you want to print a class instance, you need to tell Python how
to print it. Do that by defining a class method __str__ that
returns a str.
class Rectangle :

def __init__ (self , width = 2, height = 1):
self. __width = width
self. __height = height

def __str__ (self):
return " Rectangle with width " + str(self. __width) + \

" and height " + str(self. __height)

>>> from Rectangle import *
>>> r1 = Rectangle ()
>>> print (r1)
Rectangle with width 2 and height 1
>>> r2 = Rectangle (3, 5)
>>> print (r2)
Rectangle with width 3 and height 5

print knows to call the __str__ function on each argument.
CS303E Slideset 7: 27 Objects and Classes

Mutable vs. Immutable
Remember that integers and strings are immutable meaning that
you can’t change them.
Classes you define are mutable. For an immutable object, there is
only one copy, which is why you can’t change it.
>>> from Circle import *
>>> x = 7
>>> id(x)
10914688
>>> y = 7
>>> id(y)
10914688
>>> c1 = Circle ()
>>> c2 = Circle ()
>>> id(c1)
140497298719856
>>> id(c2)
140497298720920
>>> x is y # are x, y the same object
True
>>> c1 is c2 # are c1 , c2 the same object
False

CS303E Slideset 7: 28 Objects and Classes

Putting It All Together

Suppose you want to write a Python program to play Poker. What
is the object oriented way of thinking about this problem?

First question: What are the objects involved in a game of Poker?

Card (rank and suit)
Deck of Cards (an ordered collection of cards)
Hand (a collection of 5 cards dealt from a Deck)
Player (an entity that makes decisions about its hand)
Table (several Players competing against each other)

There are probably other ways to conceptualize this problem. It’s
good practice to put each class into its own file.

CS303E Slideset 7: 29 Objects and Classes

Putting It All Together

Suppose you want to write a Python program to play Poker. What
is the object oriented way of thinking about this problem?

First question: What are the objects involved in a game of Poker?
Card (rank and suit)
Deck of Cards (an ordered collection of cards)
Hand (a collection of 5 cards dealt from a Deck)
Player (an entity that makes decisions about its hand)
Table (several Players competing against each other)

There are probably other ways to conceptualize this problem. It’s
good practice to put each class into its own file.

CS303E Slideset 7: 30 Objects and Classes

Designing a Class: Card

Let’s start at the bottom. Suppose we want to design a
representation in Python of a playing Card.

What data is associated with a Card?
What actions are associated with a Card?

Data:
Rank: ”Ace”, ”2”, ”3”, ”4”, ”5”, ”6”, ”7”, ”8”, ”9”, ”10”,
”Jack”, ”Queen”, ”King”
Suit: ’Spades’, ’Diamonds’, ’Hearts’, ’Clubs’

Methods:
Tell me your rank.
Tell me your suit.
How would you like to be printed?

CS303E Slideset 7: 31 Objects and Classes

Designing a Class: Card

Let’s start at the bottom. Suppose we want to design a
representation in Python of a playing Card.

What data is associated with a Card?
What actions are associated with a Card?

Data:
Rank: ”Ace”, ”2”, ”3”, ”4”, ”5”, ”6”, ”7”, ”8”, ”9”, ”10”,
”Jack”, ”Queen”, ”King”
Suit: ’Spades’, ’Diamonds’, ’Hearts’, ’Clubs’

Methods:
Tell me your rank.
Tell me your suit.
How would you like to be printed?

CS303E Slideset 7: 32 Objects and Classes

Designing a Class

We’ll define a Card class with those attributes and methods.

Notice that there are:
a class definition (defines the type of an arbitrary playing
card),
instances of that class (particular cards).

CS303E Slideset 7: 33 Objects and Classes

Ranks and Suits

In the file Card.py
SUITS_NUMBER = 4
RANKS_NUMBER = 13

def isRank (r):
Recognizer for a legal rank:
return r == ’Ace ’ or r == ’2’ or r == ’3’ or r == ’4’ \

or r == ’5’ or r == ’6’ or r == ’7’ or r == ’8’ \
or r == ’9’ or r == ’10 ’ or r == ’Jack ’ \
or r == ’Queen ’ or r == ’King ’

def isSuit (s):
Recognizer for a legal suit
return s == ’Spades ’ or s == ’Diamonds ’ \

or s == ’Hearts ’ or s == ’Clubs ’

Notice that I chose to define these as auxiliary functions, defined
outside of any class definition, but maybe used within one or more
classes.

CS303E Slideset 7: 34 Objects and Classes

Ranks and Suits

In the file Card.py
We want to be able to convert from rank to number and vice

versa .
def cardRankToIndex (rank):

if rank == ’Ace ’: return 0
elif rank == ’2’: return 1

...
elif rank == ’King ’: return 12
else:

print ("Rank ", rank , "is not recognized ")

def cardIndexToRank (i):
if i == 0: return ’Ace ’
elif i == 1: return ’2’

...
elif i == 12: return ’King ’
else:

print ("Not legal index for rank:", i)

Write very similar code for Suits.

CS303E Slideset 7: 35 Objects and Classes

Card Class

In file/module Card.py
class Card:

"""A card object with a suit and rank."""
def __init__ (self , rank , suit):

""" Create a Card object with the given rank
and suit."""
if (not isRank (rank) or not isSuit (suit)):

print ("Not a legal card specification .")
return

self. __rank = rank
self. __suit = suit

def getRank (self):
return self. __rank

def getSuit (self):
return self. __suit

Remember, error messages should be printed, not returned.

CS303E Slideset 7: 36 Objects and Classes

Poker: Card Class

This is the continuation of the Card class .

def __str__ (self):
""" Return a string that is the print representation
of this Card ’s value ."""
return self. __rank + ’ of ’ + self. __suit

This tells print what string to display if you ask to print a Card
object.

CS303E Slideset 7: 37 Objects and Classes

Poker: Card Class

>>> from Card import *
>>> isRank (’Jack ’)
True
>>> isRank (’Knave ’)
False
>>> isSuit (’Clubs ’)
True
>>> c1 = Card(’2’, ’Spades ’)
>>> print (c1)
2 of Spades
>>> c1. getRank ()
’2’
>>> c1. getSuit ()
’Spades ’
>>> c1
<Card.Card object at 0 x7fc56e59d780 >
>>> c2 = Card(’Queen ’, ’Hearts ’)
>>> print (c2)
Queen of Hearts
>>> (c1 < c2)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : unorderable types : Card () < Card ()

CS303E Slideset 7: 38 Objects and Classes

Something Cool

We can’t compare Card objects, unless we define what “less than”
means for Cards.

We could add the following method to our Card class:
def __lt__ (self , other):

return (cardRankToIndex (self. __rank) \
< cardRankToIndex (other . getRank ()))

This assumes that other is another Card object; if we’re being
very careful, we could check that in our code.

Note that this only compares the ranks; it doesn’t even look at the
suit.

CS303E Slideset 7: 39 Objects and Classes

Something Cool

Now we can compare two cards using a convenient notation:
>>> from Card import *
>>> c1 = Card(’2’, ’Spades ’)
>>> c2 = Card(’5’, ’Diamonds ’)
>>> c1 < c2
True
>>> c2 < c1
False
>>> c1 > c2
False

Notice that we’re comparing cards only according to rank, and Ace
is less than 2. Think how you’d define a more robust test.

CS303E Slideset 7: 40 Objects and Classes

Comparing Class Instances

You can use all of the standard relational operators assuming you
have defined __lt__ and __le__ so Python can figure out what
you mean. You can always do equality comparison X == Y , which
will be the same as “is” (same object in memory) unless you define
__eq__.

You can also define __gt__ and __ge__ but be careful that your
definitions form a consistent collection.

You shouldn’t define all of those functions, just enough to get it to
work. That is, if you have __lt__, you don’t need __ge__ because
that’s just the negation.

CS303E Slideset 7: 41 Objects and Classes

Aside: Equality Comparisons

(X == Y) tests for structural equivalence of values. (X is Y)
tests whether two objects are in fact the same object. Sometimes
those are not the same thing

>>> x = [1, 2, 3]
>>> y = x
>>> z = [1, 2, 3]
>>> x == y
True
>>> x is y
True
>>> x == z
True
>>> x is z
False

CS303E Slideset 7: 42 Objects and Classes

Abstraction

Notice that we defined the Card class abstractly. There’s nothing
about it that indicates we’re going to be playing Poker. That’s
why it’s good to start at the bottom!

It would work as well for blackjack or
canasta. It wouldn’t work for Uno,
Rook or another game using a
specialty deck.

What would you do for such cases?

Now the interface to the Card class is the methods: getSuit(),
getRank(), print, and the relational comparisons. Any other way of
manipulating a Card object “violates the abstraction.”

CS303E Slideset 7: 43 Objects and Classes

Aside: Those Funny Names
In general, any method name in Python of the form __xyz__ is
probably not intended to be called directly. These are called
“magic methods” (or “dunder methods”) and have associated
functional syntax (“syntactic sugar”):

__init__ ClassName()
__len__ len()
__str__ str()
__lt__ <
__eq__ ==
__add__ +

However, you often can call them directly if you want.
>> "abc".__add__("def")
’abcdef’
>> l = [1, 2, 3, 4, 5]
>>> len(l)
5
>>> l.__len__()
5

CS303E Slideset 7: 44 Objects and Classes

Next stop: More on Strings.

CS303E Slideset 7: 45 Objects and Classes

