
CS303E: Elements of Computers
and Programming

More on Strings

Dr. Bill Young
Department of Computer Science

University of Texas at Austin
© William D. Young, All rights reserved.

Last updated: August 27, 2024 at 14:25

CS303E Slideset 8: 1 More on Strings

The str Class

One of the most useful Python data types is the string type,
defined by the str class. Strings are actually sequences of
characters.

Strings are immutable, meaning you can’t change them after they
are created.

CS303E Slideset 8: 2 More on Strings

Object Creation/Instantiation

All immutable objects with the same content are stored as one
object.

CS303E Slideset 8: 3 More on Strings

Creating Strings

Strings have some associated special syntax:
>>> s1 = str(" Hello ") # using the constructor function
>>> s2 = " Hello " # alternative syntax
>>> id(s1) # strings are unique
139864255464424
>>> id(s2)
139864255464424
>>> s3 = str(" Hello ")
>>> id(s3)
139864255464424
>>> s1 is s2 # are these the same object ?
True
>>> s2 is s3
True

CS303E Slideset 8: 4 More on Strings

Sequence Operations

Strings are sequences of characters. Below are some functions
defined on sequence types, though not all supported on strings
(e.g., sum).

Function Description
x in s x is in sequence s
x not in s x is not in sequence s
s1 + s2 concatenates two sequences
s * n repeat sequence s n times
s[i] ith element of sequence (0-based)
s[i:j] slice of sequence s from i to j-1
len(s) number of elements in s
min(s) minimum element of s
max(s) maximum element of s
sum(s) sum of elements in s
for loop traverse elements of sequence
<, <=, >, >= compares two sequences
==, != compares two sequences

CS303E Slideset 8: 5 More on Strings

Functions on Strings

Some functions that are available on strings:

Function Description
len(s) return length of the string
min(s) return char in string with lowest ASCII value
max(s) return char in string with highest ASCII value

>>> s1 = "Hello , World !"
>>> len(s1)
13
>>> min(s1)
’ ’
>>> min(" Hello ")
’H’
>>> max(s1)
’r’

Why does it make sense for a blank to have lower ASCII value than
any letter?

CS303E Slideset 8: 6 More on Strings

Indexing into Strings

Strings are sequences of characters, which can be accessed via an
index.

Indexes are 0-based, ranging from [0 ... len(s)-1].

You can also index using negatives, s[-i] means s[len(s)-i].

CS303E Slideset 8: 7 More on Strings

Indexing into Strings

>>> s = "Hello , World !"
>>> s[0]
’H’
>>> s[6]
’ ’
>>> s[-1]
’!’
>>> s[-6]
’W’
>>> s[-6 + len(s)]
’W’

CS303E Slideset 8: 8 More on Strings

Slicing

Slicing means to select a contiguous
subsequence of a sequence or string.

General Form:
String[start : end]

>>> s = "Hello , World !"
>>> s[1 : 4] # substring from s [1]... s[3]
’ell ’
>>> s[: 4] # substring from s [0]... s[3]
’Hell ’
>>> s[1 : -3] # substring from s [1]... s[-4]
’ello , Wor ’
>>> s[1 :] # same as s[1 : s(len)]
’ello , World !’
>>> s[: 5] # same as s[0 : 5]
’Hello ’
>>> s[:] # same as s
’Hello , World !’
>>> s[3 : 1] # empty slice
’’

CS303E Slideset 8: 9 More on Strings

Concatenation and Repetition

General Forms:
s1 + s2
s * n
n * s

s1 + s1 means to create a new string of s1 followed by s2.
s * n or n * s means to create a new string containing n
repetitions of s

>>> s1 = " Hello "
>>> s2 = ", World !"
>>> s1 + s2 # + is not commutative
’Hello , World !’
>>> s1 * 3 # * is commutative
’HelloHelloHello ’
>>> 3 * s1
’HelloHelloHello ’

Notice that concatenation and repetition overload two familiar
operators.

CS303E Slideset 8: 10 More on Strings

Looking Back

In Slideset 5, we had code to compute and print a multiplication
table up to LIMIT - 1,
> python MultiplicationTable .py

Multiplication Table
| 1 2 3 4 5 6 7 8 9

--
1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18

....
9 | 9 18 27 36 45 54 63 72 81

which included:
print (" --")

That works well for LIMIT = 10, but not otherwise. How could
you fix it?

print(" ------" + " ----" * (LIMIT - 1))

CS303E Slideset 8: 11 More on Strings

in and not in operators

The in and not in operators allow checking whether one string is
a contiguous substring of another.

General Forms:
s1 in s2
s1 not in s2

>>> s1 = "xyz"
>>> s2 = " abcxyzrls "
>>> s3 = " axbyczd "
>>> s1 in s2
True
>>> s1 in s3
False
>>> s1 not in s2
False
>>> s1 not in s3
True

CS303E Slideset 8: 12 More on Strings

Aside: Equality of Objects

There are two senses in which objects can be equal.
1 They can have equal contents; test with ==.
2 They can be literally the same object (same data in memory);

test with is.
For elementary immutable object classes such as strings and
numbers, these are the same. That’s not necessary true for
complex objects like lists or tuples.

For user-defined classes, (o1 == o2) is False unless (o1 is o2)
or you’ve overloaded == by defining __eq__ for the class.

CS303E Slideset 8: 13 More on Strings

Equality of Objects

>>> s1 = " xyzabc "
>>> s2 = "xyz" + "abc"
>>> s3 = str("xy" + "za" + "bc")
>>> s1 is s2 # s1 , s2 , s3 are all
True # the same object in
>>> s2 == s3 # memory
True
>>> s1 == s2
True
>>> from Circle import *
>>> c1 = Circle () # circle with radius 1
>>> c2 = Circle () # circle with radius 1
>>> c1 == c2 # they ’re different
False
>>> c3 = c2 # c3 is new pointer to c2
>>> c2 == c3 # they ’re the same object
True

CS303E Slideset 8: 14 More on Strings

Equality of Objects

If two objects satisfy (x is y), then they satisfy (x == y), but
not always vice versa.

>>> from Circle import *
>>> c1 = Circle ()
>>> c2 = Circle ()
>>> c3 = c2
>>> c1 is c2
False
>>> c3 is c2
True
>>> c1 == c2
False
>>> c2 == c3
True

If you define a class, you can override == and make any equality
comparison you like.

CS303E Slideset 8: 15 More on Strings

Comparing Strings

In addition to equality comparisons, you can order strings using the
relational operators: <, <=, >, >=.

For strings, this is lexicographic (or alphabetical) ordering using
the ASCII character codes.
>>> "abc" < "abcd"
True
>>> "abcd" <= "abc"
False
>>> "Paul Jones " < "Paul Smith "
True
>>> "Paul Smith " < "Paul Smithson "
True
>>> " Paula Smith " < "Paul Smith "
False

CS303E Slideset 8: 16 More on Strings

Iterating Over a String

Sometimes it is useful to do something to each character in a
string, e.g., change the case (lower to upper and upper to lower).
DIFF = ord(’a’) - ord(’A’)

def swapCase (s):
result = ""
for ch in s:

if (’A’ <= ch <= ’Z’):
result += chr(ord(ch) + DIFF)

elif (’a’ <= ch <= ’z’):
result += chr(ord(ch) - DIFF)

else:
result += ch

return result

print (swapCase (" abCDefGH "))

> python StringIterate .py
ABcdEFgh

CS303E Slideset 8: 17 More on Strings

Iterating Over a String

General Form:
for c in s:

body

You can also iterate using the indexes:
def swapCase2 (s):

result = ""
for i in range (len(s)):

ch = s[i]
if (’A’ <= ch <= ’Z’):

result += chr(ord(ch) + DIFF)
elif (’a’ <= ch <= ’z’):

result += chr(ord(ch) - DIFF)
else:

result += ch
return result

CS303E Slideset 8: 18 More on Strings

What You Can’t Do

def swapCaseWrong (s):
for i in range (len(s)):

if (’A’ <= s[i] <= ’Z’):
s[i] = chr(ord(s[i]) + DIFF)

elif (’a’ <= s[i] <= ’z’):
s[i] = chr(ord(s[i]) - DIFF)

return s

print (swapCaseWrong (" abCDefGH "))

> python StringIterate .py
Traceback (most recent call last):

File " StringIterate .py", line 38, in <module >
print (swapCaseWrong (" abCDefGH "))

File " StringIterate .py", line 35, in swapCaseWrong
s[i] = chr(ord(s[i]) - DIFF)

TypeError : ’str ’ object does not support item assignment

What went wrong?

CS303E Slideset 8: 19 More on Strings

Strings are Immutable

You can’t change a string, by assigning at an index. You have to
create a new string.

>>> s = "Pat"
>>> s[0] = ’R’
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : ’str ’ object does not support item assignment
>>> s2 = ’R’ + s[1:]
>>> s2
’Rat ’

Whenever you concatenate two strings or append something to a
string, you create a new value. Don’t forget to save it!

CS303E Slideset 8: 20 More on Strings

Let’s Take a Break

CS303E Slideset 8: 21 More on Strings

Useful Testing Methods

Below are some useful methods.

Function Description
s.isalnum(): nonempty alphanumeric string?
s.isalpha(): nonempty alphabetic string?
s.isdigit(): nonempty and contains only digits?
s.isidentifier(): follows rules for Python identifier?
s.islower(): nonempty and contains only lowercase letters?
s.isupper(): nonempty and contains only uppercase letters?
s.isspace(): nonempty and contains only whitespace?

Notice that these are methods of class str, not functions, so must
be called on a string s.
>>> islower ("xyz")
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
NameError : name ’islower ’ is not defined

CS303E Slideset 8: 22 More on Strings

Useful Testing Methods

>>> s1 = " abc123 "
>>> s1. isalnum ()
True
>>> s1. isalpha ()
False
>>> "abcd". isalpha ()
True
>>> "1234". isdigit ()
True
>>> "abcd". islower ()
True
>>> "abCD". isupper ()
False
>>> "". islower ()
False
>>> "". isdigit ()
False
>>> "\t\n \r". isspace () # contains tab , newline , return
True
>>> "\t\n xyz". isspace () # contains non - whitespace
False

CS303E Slideset 8: 23 More on Strings

Example: Recognizer for Integers

Suppose you want to know if your string input represents a decimal
integer, which may be signed. You might write the following:
def isInt (s):

return s. isdigit () \
or ((s[0] == ’-’ or s[0] == ’+’) \

and s [1:]. isdigit ())

Notice that this allows some peculiar inputs like +000000, but then
so does Python.

CS303E Slideset 8: 24 More on Strings

Better Error Checking

When your program accepts input from the user, it’s always a good
idea to “validate” the input.

Earlier in the semester, we wrote:

See if an integer entered is prime.
num = int(input("Enter an integer : "))
< code to test if num is prime >

What’s ’wrong’ with this code?

If the string entered does not represent an integer, int might fail.
>>> num = int (input (" Enter an integer : "))
Enter an integer : 3.4
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
ValueError : invalid literal for int () with base 10: ’3.4 ’

CS303E Slideset 8: 25 More on Strings

Better Error Checking

When your program accepts input from the user, it’s always a good
idea to “validate” the input.

Earlier in the semester, we wrote:

See if an integer entered is prime.
num = int(input("Enter an integer : "))
< code to test if num is prime >

What’s ’wrong’ with this code?

If the string entered does not represent an integer, int might fail.
>>> num = int (input (" Enter an integer : "))
Enter an integer : 3.4
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
ValueError : invalid literal for int () with base 10: ’3.4 ’

CS303E Slideset 8: 26 More on Strings

Better Error Checking

This is better:
See if an integer entered is prime .
while (True):

recall that input returns a string
stringInput = input (" Enter a positive integer : ")
if (stringInput . isdigit ()):

break
else:

print (" Invalid input : not a positive integer .", \
" Try again !")

At this point , do we know that stringInput represents
a positive integer ? Any positive integer ?
num = int(stringInput)
< code to test if num is prime >

This still isn’t quite right. Can you see what’s wrong?

It doesn’t allow +3, but does allow 0. How would you fix it?

CS303E Slideset 8: 27 More on Strings

Better Error Checking

This is better:
See if an integer entered is prime .
while (True):

recall that input returns a string
stringInput = input (" Enter a positive integer : ")
if (stringInput . isdigit ()):

break
else:

print (" Invalid input : not a positive integer .", \
" Try again !")

At this point , do we know that stringInput represents
a positive integer ? Any positive integer ?
num = int(stringInput)
< code to test if num is prime >

This still isn’t quite right. Can you see what’s wrong?

It doesn’t allow +3, but does allow 0. How would you fix it?

CS303E Slideset 8: 28 More on Strings

Testing Our Code

> python IsPrime4 .py
Enter a positive integer : -12
Invalid input : not a positive integer . Try again !
Enter a positive integer : abcd
Invalid input : not a positive integer . Try again !
Enter a positive integer : 57
57 is not prime

CS303E Slideset 8: 29 More on Strings

Substring Search

We already saw that in and not in work on strings.

Python provides some other string methods to see if a string
contains another as a substring:

Function Description
s.endswith(s1): does s end with substring s1?
s.startswith(s1): does s start with substring s1?
s.find(s1): lowest index where s1 starts in s, -1 if not found
s.rfind(s1): highest index where s1 starts in s, -1 if not found
s.count(s1): number of non-overlapping occurrences of s1 in s

CS303E Slideset 8: 30 More on Strings

Substring Search

>>> s = "Hello , World !"
>>> s. endswith ("d!")
True
>>> s. startswith (" hello ") # case matters
False
>>> s. startswith (" Hello ")
True
>>> s.find(’l’) # search from left
2
>>> s. rfind (’l’) # search from right
10
>>> s. count (’l’)
3
>>> " ababababa ". count (’aba ’) # nonoverlapping occurrences
2

CS303E Slideset 8: 31 More on Strings

Converting Strings

Below are some additional methods on strings. Remember that
strings are immutable, so these all make a new copy of the string.
They don’t change s.

Function Description
s.capitalize(): return a copy with first character capitalized
s.lower(): lowercase all letters
s.upper(): uppercase all letters
s.title(): capitalize all words
s.swapcase(): lowercase letters to upper, and vice versa
s.replace(old, new): replace occurences of old with new

So remember to save the result!

CS303E Slideset 8: 32 More on Strings

Don’t Forget to Save the Result

A very common error is to forget what it means to be immutable:
no operation changes the original string. If you want the changed
result, you have to save it.

>>> s1 = " abCDefGH "
>>> s1. swapcase ()
’ABcdEFgh ’
>>> s1 # s1 didn ’t change
’abCDefGH ’
>>> s2 = s1. swapcase () # save the result
>>> s2
’ABcdEFgh ’
>>>

BTW: what happens to the result if you don’t save it?

CS303E Slideset 8: 33 More on Strings

String Conversions

>>> " abcDEfg ". upper ()
’ABCDEFG ’
>>> " abcDEfg ". lower ()
’abcdefg ’
>>> " abc123 ". upper () # only letters
’ABC123 ’
>>> " abcDEF ". capitalize ()
’Abcdef ’
>>> " abcDEF ". swapcase () # only letters
’ABCdef ’
>>> book = " introduction to programming using python "
>>> book. title () # doesn ’t change book
’Introduction To Programming Using Python ’
>>> book2 = book. replace ("ming", "s")
>>> book2
’introduction to programs using python ’
>>> book2 . title ()
’Introduction To Programs Using Python ’
>>> book2 . title (). replace (" Using ", "With")
’Introduction To Programs With Python ’

CS303E Slideset 8: 34 More on Strings

Stripping Whitespace

It’s often useful to remove whitespace at the start, end, or both of
string input. Use these functions:

Function Description
s.lstrip(): return copy with leading whitespace removed
s.rstrip(): return copy with trailing whitespace removed
s.strip(): return copy with leading and trailing whitespace removed

>>> s1 = " abc "
>>> s1. lstrip () # new string
’abc ’
>>> s1. rstrip () # new string
’ abc ’
>>> s1. strip () # new string
’abc ’
>>> "a b c". strip ()
’a b c’

CS303E Slideset 8: 35 More on Strings

Strip User Input

It’s typically a good idea to strip user input to remove extraneous
white space!

>>> ans = input (" Please enter YES or NO: ")
Please enter YES or NO: NO
>>> ans
’ NO ’
>>> ans == ’YES ’ or ans == ’NO ’
False
>>> ans = input (" Please enter YES or NO: "). strip ()
Please enter YES or NO: YES
>>> ans
’YES ’
>>> ans == ’YES ’ or ans == ’NO ’
True
>>>

CS303E Slideset 8: 36 More on Strings

Formatting Strings

Recall from Slideset 3, our functions for formatting strings. The
str class also has some formatting options:

Function Description
s.center(w): returns a string of length w, with s centered
s.ljust(w): returns a string of length w, with s left justified
s.rjust(w): returns a string of length w, with s right justified

s = "abc"
>>> s. center (10) # new string
’ abc ’
>>> s. ljust (10) # new string
’abc ’
>>> s. rjust (10) # new string
’ abc ’
>>> s. center (2) # new string
’abc ’

CS303E Slideset 8: 37 More on Strings

Looking Back (Again)

In Slideset 5, we had code to compute and print a multiplication
table up to LIMIT - 1.
> python MultiplicationTable .py

Multiplication Table
| 1 2 3 4 5 6 7 8 9

--
1 | 1 2 3 4 5 6 7 8 9

...

which included the following code to center the title:
print (" Multiplication Table ")

A better way would be:
print (" Multiplication Table ". center (6 + 4 * (LIMIT -1)))

CS303E Slideset 8: 38 More on Strings

Multiplication Table Revisited

With LIMIT = 10:
> python MultiplicationTable .py

Multiplication Table
| 1 2 3 4 5 6 7 8 9

--
1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18

...
9 | 9 18 27 36 45 54 63 72 81

With LIMIT = 13:
> python MultiplicationTable .py

Multiplication Table
| 1 2 3 4 5 6 7 8 9 10 11 12

--
1 | 1 2 3 4 5 6 7 8 9 10 11 12
2 | 2 4 6 8 10 12 14 16 18 20 22 24

...
12 | 12 24 36 48 60 72 84 96 108 120 132 144

CS303E Slideset 8: 39 More on Strings

String Example: CSV Files

A comma-separated values (csv) file is a common way to record
data. Each line has multiple values separated by commas. For
example, I can download your grades from Canvas in csv format:

Name ,EID ,HW1 ,HW2 ,Exam1 ,Exam2 ,Exam3
Possible , ,10 ,10 ,100 ,100 ,100
Jones;Bob ,bj123 ,10 ,9 ,99 ,60 ,45
Riley;Frank ,fr498 ,4 ,8 ,72 ,95 ,63
Smith;Sally ,ss324 ,5 ,10 ,100 ,75 ,80

Suppose you needed to process such a file. There’s an easy way to
extract that data (the Python string split method), which we’ll
cover soon.

But suppose you needed to write your own functions to extract the
data from a line.

CS303E Slideset 8: 40 More on Strings

String Example: Line of csv Data

Later we’ll explain how to process files. For now, let’s process a
line.

In file FieldToComma2.py:
def SplitOnComma (str):

""" Given a string possibly containing a comma ,
return the initial string (before the comma) and
the string after the comma . If there is no comma ,
return the string and the empty string . """
if (’,’ in str):

index = str.find(",")
Note: returns a pair of values
return str [: index], str[index +1:]

else:
return str , ""

Notice that this returns a pair of values. How would you split on
something other than a comma?

CS303E Slideset 8: 41 More on Strings

String Example: Line of csv Data

>>> from FieldToComma2 import *
>>> line = " abc , def ,ghi , jkl "
>>> first , rest = SplitOnComma (line)
>>> first
’ abc ’
>>> rest
’ def ,ghi , jkl ’
>>> first , rest = SplitOnComma (rest)
>>> first
’ def ’
>>> rest
’ghi , jkl ’

CS303E Slideset 8: 42 More on Strings

String Example

def SplitFields (line):
""" Iterate through a csv line to extract and print
the values , stripped of extra whitespace . """
rest = line. strip ()
i = 1
while (’,’ in rest):

next , rest = SplitOnComma (rest)
print (" Field ", i, ": ", next. strip () , sep = "")
i += 1

print (" Field ", i, ": ", rest. strip () , sep = "")

>>> from FieldToComma2 import *
>>> csvLine = " xyz , 123 ,a, 12, abc "
>>> SplitFields (csvLine)
Field1 : xyz
Field2 : 123
Field3 : a
Field4 : 12
Field5 : abc

CS303E Slideset 8: 43 More on Strings

Next stop: Lists.

CS303E Slideset 8: 44 More on Strings

