
CS303E: Elements of Computers
and Programming

Lists

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: November 3, 2023 at 12:29

CS303E Slideset 9: 1 Lists

Lists

The list class is one of the most useful in Python.

Both strings and lists are sequence types in Python, so share many
similar methods. Unlike strings, lists are mutable.

If you change a list, it doesn’t create a new copy; it changes the
input list.

CS303E Slideset 9: 2 Lists

Value of Lists

Suppose you have 30 different test grades to average. You could
use 30 variables: grade1, grade2, ..., grade30. Or you could use
one list with 30 elements: grades[0], grades[1], ..., grades[29].

In file AverageScores.py:
grades = [67, 82, 56, 84, 66, 77, 64, 64, 85, 67, \

73, 63, 98, 74, 81, 67, 93, 77, 97, 65, \
77, 91, 91, 74, 93, 56, 96, 90, 91, 99]

sum = 0
for score in grades :

sum += score
average = sum / len(grades)
print (" Class average :", format (average , ".2f"))

> python AverageScores .py
Class average : 78.60

CS303E Slideset 9: 3 Lists

Indexing and Slicing

Indexing and slicing on lists are as for strings, including negative
indexes.

CS303E Slideset 9: 4 Lists

Creating Lists

Lists can be created with the list class constructor or using
special syntax.

>>> list () # create empty list , with constructor
[]
>>> list ([1 , 2, 3]) # create list [1, 2, 3]
[1, 2, 3]
>>> list (["red", 3, 2.5]) # create heterogeneous list
[’red ’, 3, 2.5]
>>> ["red", 3, 2.5] # create list , no explicit constructor
[’red ’, 3, 2.5]
>>> range (4) # not an actual list
range (0, 4)
>>> list(range (4)) # create list using range
[0, 1, 2, 3]
>>> list("abcd") # create character list from string
[’a’, ’b’, ’c’, ’d’]

CS303E Slideset 9: 5 Lists

Lists vs. Arrays

Many programming languages have an array type. Python doesn’t
have native arrays (though some Python libraries add arrays).

Arrays are:
homogeneous (all elements
are of the same type)
fixed size
permit very fast access time

Python lists are:
heterogeneous (can contain
elements of different types)
variable size
permit fast access time

CS303E Slideset 9: 6 Lists

Sequence Operations

Like strings, lists are sequences and inherit various functions from
sequences.

Function Description
x in s x is in sequence s
x not in s x is not in sequence s
s1 + s2 concatenates two sequences
s * n repeat sequence s n times
s[i] ith element of sequence (0-based)
s[i:j] slice of sequence s from i to j-1
len(s) number of elements in s
min(s) minimum element of s
max(s) maximum element of s
sum(s) sum of elements in s
for loop traverse elements of sequence
<, <=, >, >= compares two sequences
==, != compares two sequences

CS303E Slideset 9: 7 Lists

Calling Functions on Lists

>>> l1 = [1, 2, 3, 4, 5]
>>> len(l1)
5
>>> min(l1) # assumes elements are comparable
1
>>> max(l1) # assumes elements are comparable
5
>>> sum(l1) # assumes summing makes sense
15
>>> l2 = [1, 2, "red"]
>>> sum(l2)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : unsupported operand type(s) for +: ’int ’ and ’str

’
>>> min(l2)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : ’<’ not supported between instances of ’str ’ and

’int ’
>>>

CS303E Slideset 9: 8 Lists

Aside: Functions vs. Methods

Since lists are actual objects in class lst, shouldn’t len, max, etc.
be methods instead of functions? Yes and no!

Remember from earlier that len is actually syntactic sugar for the
method __len__.

>>> len ([1, 2, 3])
3
>>> [1, 2, 3]. __len__ ()
3

The others (sum, max, min) are actually functions defined on the
class, for user convenience.

You just have to remember which operators are functions and
which are methods.

CS303E Slideset 9: 9 Lists

Using Functions

We could rewrite AverageScores.py as follows:
grades = [67, 82, 56, 84, 66, 77, 64, 64, 85, 67, \

73, 63, 98, 74, 81, 67, 93, 77, 97, 65, \
77, 91, 91, 74, 93, 56, 96, 90, 91, 99]

average = sum(grades) / len(grades)
print (" Class average :", format (average , ".2f"))

> python AverageScores .py
Class average : 78.60

CS303E Slideset 9: 10 Lists

Traversing Elements with a For Loop
General Form:
for u in list:

body

In file test.py:
for u in range (3): # not really a list

print (u, end=" ")
print ()

for u in [2, 3, 5, 7]:
print (u, end=" ")

print ()

for u in range (15 , 1, -3): # not really a list
print (u, end=" ")

print ()

> python test.py
0 1 2
2 3 5 7
15 12 9 6 3

CS303E Slideset 9: 11 Lists

Comparing Lists

Compare lists using the operators: >, >=, <, <=, ==, !=. Uses
lexicographic ordering: Compare the first elements of the two lists;
if they match, compare the second elements, and so on. The
elements must be of comparable classes.
>>> list1 = ["red", 3, " green "]
>>> list2 = ["red", 3, "grey"]
>>> list1 < list2
True
>>> list3 = ["red", 5, " green "]
>>> list3 > list1
True
>>> list4 = [5, "red", " green "]
>>> list3 < list4
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : ’<’ not supported between instances of ’str ’ and

’int ’
>>> ["red", 5, " green "] == [5, "red", " green "]
False

BTW: the book’s comparisons in 10.2.8 seem wrong.
CS303E Slideset 9: 12 Lists

List Comprehension

List comprehension gives a compact syntax for building lists.
>>> range (4) # not actually a list
range (0, 4)
>>> [x for x in range (4)] # create list from range
[0, 1, 2, 3]
>>> [x ** 2 for x in range (4)]
[0, 1, 4, 9]
>>> lst = [2, 3, 5, 7, 11, 13]
>>> [x ** 3 for x in lst]
[8, 27, 125 , 343 , 1331 , 2197]
>>> [x for x in lst if x > 2]
[3, 5, 7, 11, 13]
>>> [s[0] for s in ["red", " green ", "blue"] if s <= " green "]
[’g’, ’b’]
>>> from IsPrime3 import *
>>> [x for x in range (100) if isPrime (x)]
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,

59, 61, 67, 71, 73, 79, 83, 89, 97]

CS303E Slideset 9: 13 Lists

Let’s Take a Break

CS303E Slideset 9: 14 Lists

More List Methods

These are methods from class list. Since lists are mutable, these
actually change l.

Function Description
l.append(x) add x to the end of l
l.extend(l2) append elements of l2 to l
l.insert(i, x) insert x into l at position i
l.pop() remove and return the last element of l
l.pop(i) remove and return the ith element of l
l.remove(x) remove the first occurence of x from l
l.reverse() reverse the elements of l
l.sort() order the elements of l
l.count(x) number of times x appears in l
l.index(x) index of first occurence of x in l

CS303E Slideset 9: 15 Lists

List Examples

>>> l1 = [1, 2, 3]
>>> l1. append (4) # add 4 to the end of l1
>>> l1 # note: changes l1
[1, 2, 3, 4]
>>> l1. count (4) # count occurrences of 4 in l1
1
>>> l2 = [5, 6, 7]
>>> l1. extend (l2) # add elements of l2 to l1
>>> l1
[1, 2, 3, 4, 5, 6, 7]
>>> l1. index (5) # where does 5 occur in l1?
4
>>> l1. insert (0, 0) # add 0 at the start of l1
>>> l1 # note new value of l1
[0, 1, 2, 3, 4, 5, 6, 7]
>>> l1. insert (3, ’a’) # lists are heterogenous
>>> l1
[0, 1, 2, ’a’, 3, 4, 5, 6, 7]
>>> l1. remove (’a’) # what goes in can come out
>>> l1
[0, 1, 2, 3, 4, 5, 6, 7]

CS303E Slideset 9: 16 Lists

List Examples

>>> l1.pop () # remove and return last element
7
>>> l1
[0, 1, 2, 3, 4, 5, 6]
>>> l1. reverse () # reverse order of elements
>>> l1
[6, 5, 4, 3, 2, 1, 0]
>>> l1.sort () # elements must be comparable
>>> l1
[0, 1, 2, 3, 4, 5, 6]
>>> l2 = [4, 1.3 , "dog"]
>>> l2.sort () # elements must be comparable
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : ’<’ not supported between instances of ’str ’ and

’float ’
>>> l2.pop () # put the dog out
’dog ’
>>> l2
[4, 1.3]
>>> l2.sort () # int and float are comparable
>>> l2
[1.3 , 4]

CS303E Slideset 9: 17 Lists

Random Shuffle

A useful method on lists is random.shuffle() from the random
module.

>>> import random
>>> list1 = [x for x in range (9)]
>>> list1
[0, 1, 2, 3, 4, 5, 6, 7, 8]
>>> random . shuffle (list1)
>>> list1
[7, 4, 0, 8, 1, 6, 5, 2, 3]
>>> random . shuffle (list1)
>>> list1
[4, 1, 5, 0, 7, 8, 3, 2, 6]
>>> random . shuffle (list1)
>>> list1
[7, 5, 2, 6, 0, 4, 3, 1, 8]

CS303E Slideset 9: 18 Lists

Splitting a String into a List

Recall our SplitFields function from Slideset 8 to split up a
comma separated value (csv) string. Python provides an easier
approach with the split method on strings.
>>> str1 = "abc , def , ghi"
>>> str1. split (",") # split on comma
[’abc ’, ’ def ’, ’ ghi ’] # keeps whitespace
>>> strs = " abc def ghi "
strs. split () # split on whitespace
[’abc ’, ’def ’, ’ghi ’]
>>> str3 = "\tabc\ndef\r ghi\n"
>>> str3. split () # split on whitespace
[’abc ’, ’def ’, ’ghi ’]
>>> str4 = "abc / def / ghi"
>>> str4. split ("/") # split on slash
[’abc ’, ’ def ’, ’ ghi ’]

Note split with no arguments splits on whitespace.

CS303E Slideset 9: 19 Lists

Processing CSV Lines

Suppose grades for a class were stored in a list of csv strings, such
as:

studentData = ["Charlie ,90 ,75",
"Frank ,8 ,77",
"Susie ,60 ,80"]

Here the fields are: Name, Midterm grade, Final Exam grade.

Compute the average for each student and print a nice table of
results. Remember that we solved a version of this problem in
Slideset 3, where the data was entered by the user.

CS303E Slideset 9: 20 Lists

Processing CSV Lines

def ProcessStudentData (studentData):
""" Process list of csv student records . """
Print header line:
print ("Name MT FN Avg")
print (" ----------------------------")

for line in studentData :
fields = line. split (’,’)
if (len(fields) < 3):

print ("Bad student record for ", fields [0])
continue

else:
name , midterm , final = fields [0]. strip () , \

int(fields [1]. strip ()), \
int(fields [2]. strip ())

avg = (midterm + final) / 2
print (format (name , "10s"), \

format (midterm , "4d"), \
format (final , "4d"), \
format (avg , "7.2f"))

CS303E Slideset 9: 21 Lists

Processing CSV Lines

def main ():
studentData = ["Charlie ,90 ,75",

"Frank ,8 ,77",
"Johnnie ,40",
"Susie ,60 ,80"]

ProcessStudentData (studentData)

main ()

> python ExamExample2 .py
Name MT FN Avg

Charlie 90 75 82.50
Frank 8 77 42.50
Bad student record for Johnnie
Susie 60 80 70.00

CS303E Slideset 9: 22 Lists

Copying Lists

Suppose you want to make a copy of a list. The following won’t
work!
>>> lst1 = [1, 2, 3, 4]
>>> lst2 = lst1
>>> lst1 is lst2 # there ’s only one list here
True
>>> print (lst1)
[1, 2, 3, 4]
>>> print (lst2)
[1, 2, 3, 4]
>>> lst1. append (5) # changes to lst1 also change lst2
>>> print (lst2)
[1, 2, 3, 4, 5]

But you can do the following:
>>> lst2 = [x for x in lst1] # creates a new copy

CS303E Slideset 9: 23 Lists

Passing Lists to Functions
Like any other mutable object, when you pass a list to a function,
you’re really passing a reference (pointer) to the object in memory.
def alter(lst):

lst.pop ()

def main ():
lst = [1, 2, 3, 4]
print(" Before call: ", lst)
alter(lst)
print("After call: ", lst)

main ()

> python ListArg .py
Before call: [1, 2, 3, 4]
After call: [1, 2, 3]

CS303E Slideset 9: 24 Lists

Let’s Take a Break

CS303E Slideset 9: 25 Lists

Classes Using Lists: Card Deck Example

In Slideset 7 we introduced the Card class. Let’s now define a
Deck of Cards. Remember we defined some functions: isRank,
isSuit, cardRankToIndex, cardIndexToRank, etc.

It would be much easier to just add the following constant
definitions to Card.py.

RANKS = [’Ace ’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, \
’9’, ’10 ’, ’Jack ’, ’Queen ’, ’King ’]

SUITS = [’Spades ’, ’Diamonds ’, ’Hearts ’, ’Clubs ’]

Think of how you’d redefine the functions listed above with those
lists available.

CS303E Slideset 9: 26 Lists

Card Auxiliary Functions

RANKS = [’Ace ’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, \
’10 ’, ’Jack ’, ’Queen ’, ’King ’]

SUITS = [’Spades ’, ’Diamonds ’, ’Hearts ’, ’Clubs ’]

def isRank (r):
return r in RANKS

def isSuit (s):
return s in SUITS

def cardRankToIndex (r):
return RANKS . index (r)

def cardSuitToIndex (s):
return SUITS . index (s)

CS303E Slideset 9: 27 Lists

Designing the Deck Class

A deck of cards “is” a list of Card objects, one for each
combination of rank and suit.

Data: a list of Card objects, initially all possible combinations of
rank and suit.

Methods:
Print the deck in order.
Shuffle the deck.
Deal a card from deck.
How many cards are left in the deck (after dealing)?

CS303E Slideset 9: 28 Lists

Create a Card Deck

In file Deck.py:
import random
from Card import *

class Deck:
""" Defines the Deck class . Each Deck contains
a list of cards , one for each rank and suit """

def __init__ (self):
""" Return a new deck of cards ."""
self. __cards = []
for suit in Card. SUITS :

for rank in Card. RANKS :
c = Card(rank , suit)
self. __cards . append (c)

CS303E Slideset 9: 29 Lists

Card Deck Example

Other things we might want to do with a deck are:
1 shuffle the deck
2 deal a card from the deck
3 ask how many cards are left in the deck
4 print the deck in order

Since the deck “is” a list, shuffling just means calling the
random.shuffle function.

def shuffle (self):
""" Shuffle the cards."""
random . shuffle (self. __cards)

Since lists are mutable, this shuffles in place, i.e., it doesn’t create
a new deck.

CS303E Slideset 9: 30 Lists

Dealing a Card and Deck Length

Dealing a Card means removing the top card from the Deck and
returning that card:

def deal(self):
""" Remove and return the top card , or None
if the deck is empty ."""
if len(self) == 0:

print ("Deck is empty .")
return None

else:
return self. __cards .pop (0)

Notice that we’re calling len(self) to check whether the Deck is
empty. This only works if we define the __len__ method for the
class:

def __len__ (self):
""" Returns the number of cards left in the deck."""
return len(self. __cards)

CS303E Slideset 9: 31 Lists

Printing a Deck

Finally, we can use the print method for Deck class instances only
if we’ve defined a __str__ method to generate an appropriate
string value:

def __str__ (self):
result = ""
for c in self. __cards :

Here we ask each card how it
wants to be printed .
result = result + str(c) + "\n"

return result

Notice that str(c) only works because we defined the __str__
method within class Card.

CS303E Slideset 9: 32 Lists

Using the Deck Class

>>> from Deck import *
>>> d = Deck () # create a new deck
>>> print (d) # print , notice order
Ace of Spades
2 of Spades

...
Jack of Clubs
Queen of Clubs
King of Clubs

>>> d. shuffle () # randomly shuffle deck
>>> print (d)
Queen of Spades
5 of Diamonds
4 of Clubs

...
Jack of Diamonds
8 of Clubs

CS303E Slideset 9: 33 Lists

Using the Deck Class

>>> c1 = d.deal () # deal top card
>>> print (c1)
Queen of Spades
>>> c2 = d.deal () # deal next card
>>> print (c2)
5 of Diamonds
>>> len(c1) # didn ’t define len for Card
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : object of type ’Card ’ has no len ()
>>> len(d) # deck now 50 cards
50
>>> d. __len__ () # len same as __len__
50
>>> d. __cards # can ’t access private field
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
AttributeError : ’Deck ’ object has no attribute ’__cards ’

CS303E Slideset 9: 34 Lists

Designing the Hand Class

Recall that our initial goal (from the Object slideset) was playing
Poker. Now that we have Cards and Decks, we can define Hands;
a poker hand is five cards.

Data: a list of five Card objects,
dealt from a Deck object.

Methods:
Print the hand in order.
(Later) evaluate the hand as a
poker hand.

CS303E Slideset 9: 35 Lists

The Hand Class
From file Hand.py:
import Card
from Deck import *

class Hand:
""" Five cards dealt from a Deck object . """
def __init__ (self , deck):

""" A hand is simply a list of 5 cards , dealt
from the deck. """

if (len(deck) < 5):
print ("Not enough cards left!")
return None

self. __cards = []
for i in range (5):

card = deck.deal () # deal next card
self. __cards . append (card) # append to hand

def __str__ (self):
result = ""
for card in self. __cards :

result = result + str(card) + "\n"
return result

CS303E Slideset 9: 36 Lists

The Hand Class

Finally, we allow looking at the cards in the Hand object:
def getCard (self , i):

""" Get the ith card from the hand , where
i in [0..4]. """

if (0 <= i <= 4):
return self. __cards [i]

else:
return None

CS303E Slideset 9: 37 Lists

Using the Hand Class

>>> from Hand import *
>>> h1 = Hand () # can ’t deal without a deck
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : __init__ () missing 1 required positional argument

: ’deck ’
>>> d = Deck () # so create a new deck
>>> d. shuffle () # shuffle it
>>> print (d)
7 of Clubs
King of Diamonds
6 of Diamonds
Queen of Spades
8 of Clubs
Jack of Hearts
8 of Hearts

...
7 of Spades
10 of Clubs

CS303E Slideset 9: 38 Lists

Using the Hand Class

>>> h1 = Hand(d) # deal a hand from Deck d
>>> print (h1)
7 of Clubs
King of Diamonds
6 of Diamonds
Queen of Spades
8 of Clubs

>>> h2 = Hand(d) # deal another hand
>>> print (h2)
Jack of Hearts
8 of Hearts
Jack of Clubs
9 of Clubs
8 of Diamonds

>>> len(d)
42
>>> len(h1) # we didn ’t define len on Hand
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : object of type ’Hand ’ has no len ()

CS303E Slideset 9: 39 Lists

Future Work

It would be nice to be able to evaluate a hand as a poker hand,
and perhaps compare two hands.

That would be a pretty good project!

CS303E Slideset 9: 40 Lists

Next stop: More on Lists.

CS303E Slideset 9: 41 Lists

