
Worksheet #10 More on Lists Answer Key =)

TRUE/FALSE

Notes:
(A) True! Index 2 is the third item in myList, and index 3 of that gets us the fourth element.
(B) This is nonsensical! Our search algorithm should return the index itself, so that way we know where the item is



in our list. Returning the index + 1 simply means we're getting the position of the item in a 1-based (instead of
0-based) indexing system.
(D) False! Refer to Q2 of multiple choice answer explanations.
(J) False! Binary search halves the search space, but this occurs each iteration. Because we repeatedly halve the
length of the list, binary search will only require up to log_2(list length) searches. This helps!:
https://www.khanacademy.org/computing/computer-science/algorithms/binary-search/a/running-time-of-binary-sear
ch

MULTIPLE CHOICE

Correct answer explanation:
(C) Yes! Binary search is more efficient than linear search, but it requires a sorted list. But if we
knew the list was sorted, then binary search would be a better choice than linear search,
especially on larger lists (because linear search would check each and every item, whereas binary
search halves the search space each iteration).

Wrong answer explanations:
(A) Binary search requires a sorted list, because the algorithm compares the target value to the
middle element of the list and eliminates half of the remaining elements based on this
comparison, repeating this process until the target value is found or the search space is empty.
(B) Binary search is not guaranteed to get us the first occurrence of an item in a list, because it
checks the middle index first. For example: if we provide the list [5, 5, 5] to binary search and
specify that we want to find 5, then we will get back index 1 instead of index 0.



(D) With linear and binary search, we provide the item we want the index of. (D) implies we
would simply get the max value back, instead of an index. In this scenario, it’d be preferable to
use max().
(E) because (C) is correct, (E) cannot be true.

Correct answer explanation:
(A) Linear search simply checks the items in our list, left to right, in order to find a specific item.
Because 616 is the eighth item in our list, a linear search will require eight iterations to find it.

Correct answer explanation:
(E): Binary search compares the item we’re looking for, to the middle of the list, to decide
whether we need to cut the lower half or upper half of the list. To calculate the middle of the list
(let’s call this our pivot), we add the index of our start (0) and our end (8) and divide by 2. This
means our pivot starts at index 4 – this is 98 in our list.

We compare 616 to 98 – we are over, so we eliminate 98 and below. We set our ‘start’ to one
after our previous middle. This would set our start to be index 5. We then recalculate the middle.
Our start is index 5, our end is index 8. 5 + 8 = 13, divided by 2 results in either 6 (round down)
or 7 (round up) for our middle.

If our binary search rounds up the middle when there is a decimal, middle will be index 7, then
we compare 616 to 616 and see we have a match. This would be the second iteration.

If our binary search rounds down the middle when there is a decimal, middle is index 6, which
will be 364 in our list. We compare 616 to 364 – we are still over. So, we eliminate 364 and
below. We set our ‘start’ to one index after our previous middle, which was index 6 – so now our
‘start’ is 7.

Using a start of 7 and end of 8, we get 7.5 for our middle – we know our binary search rounds



down, so the middle will be 7, which is 616. Now, we will compare 616 to 616, and see we have
a match. This would be the third iteration.

Correct answer explanation:
(B) Selection sort works by finding the minimum of the list and swapping it with the element at
the front, then finding the next minimum and swapping it with the element at the second-most
front, etc. So, we will find the first minimum of the list, which is 42, and swap it with the front,
which is 86485. Our list now is [42, 86485, 1337, 404, 777, 9000, 24601].

We then find the second minimum of the list, which is 404, and swap it with the item at the
second-most front position (86485). Our list now is [42, 404, 1337, 86485, 777, 9000, 24601].

We then find the third minimum of the list, which is 777, and swap it with the item at the
third-most front position (1337). Our list is now [42, 404, 777, 86485, 1337, 9000, 24601],
which matches with (B).

Correct answer explanation:
(C) Insertion sort will start by comparing the first two elements of the list, and swapping them to
be sorted. This means we will compare 86485 and 42 – we swap 42 to be in front. Iteration one,
done! Our list is currently [42, 86485, 1337, 404, 777, 9000, 24601].

We then consider the next item in the list, 1337. We will compare it with our two sorted elements
from before. 1337 is greater than 42 but less than 86485, so it will go between them. Our list is
now [42, 1337, 86485, 404, 777, 9000, 24601]. Iteration two, check!



We now consider 404. It is greater than 42, but less than 1337, so we place it there. Our list
becomes [42, 404, 1337, 86485, 777, 9000, 24601], which matches (C).

(fun fact – 100acreWood is actually an invalid name, because it starts with a number. I should fix
this LOL)

Correct answer explanation:
(C) yes! We index 1 into 100acreWood to get the list [“eeyore”, “rabbit”, “owl”, “dumbo”], and
we call .remove(“dumbo”) on this list. This properly removes “dumbo” from the inner list.

Wrong answer explanations:
(A) “dumbo” is not a direct item of 100acreWood, because it is in one of the inner lists.
.remove() checks the items of 100acreWood, to see if any are equal to “dumbo”, and it will
remove the first match. .remove() won’t find a match, so this causes an error..
(B) This would remove the item at index 1 of 100acreWood, which would be the whole list
[“eeyore”, “rabbit”, “owl”, “dumbo”]. We only want to remove “dumbo”.
(D) pop() takes in an index as a parameter, not the item itself.

This is a fun question!



Correct answer explanation:
(C) Yes! We get the item at index 1 of myTeam ([“mew”, “mewtwo”]). And then we check to see
if “mew” is in this list – this will evaluate to True.

Wrong answer explanations:
(A) “mew” is an item in one of the inner lists of myTeam – it is not a direct item of myTeam, so
the expression “ ‘mew’ in myTeam ” will be False.
(B) [item for item in myTeam] will simply recreate myTeam. So, because the expression “ ‘mew’
in myTeam ” is False, the expression “True if ‘mew’ in [item for item in myTeam] else False ”
will also be False.
(D) myTeam[1:1] will be an empty list, because we specify the same starting and ending index.
So, there is no way “mew” will be in myTeam[1:1].

Correct answer explanation:
(B) Yes! Selection sort will repeatedly scan through the list to find the minimum element to place
at the front. For example, on list [1, 2, 3, 4, 5, 6, 8, 7], it will scan all 4 items to find the
minimum (1) to try to place it at the front, even though it is already there. Then it scans through
the next 7 items to find the next minimum (2) to place, even though 2 is already sorted, and so
on…

In contrast, insertion sort starts at the front of the list and will decide – 1 or 2, which is the
minimum? 1 is, but it’s already sorted. Neat. So then insertion sort looks at 2 or 3 – minimum is
2, but it’s already sorted. Then, 3 or 4 – 3 is lower, but it’s already in-place. 4 or 5 – 4 is lower,
already sorted. Etc.

Note that a question like this would NOT pop up on the exam. This is quite advanced. But for
you kiddos who want to make SURE that you understand the sorts, or you kiddos going into CS
313E, here you go! =)



Wrong answer explanations:
(A) Not true. Neither algorithm would cause unneeded swaps – the only difference is how they
go about selecting and or placing elements.
(C) Not true! The algorithms take different approaches to sorting, so one must be more efficient
than the other in some cases.
(D) Not true!

TRACING

A double list comprehension!!! GASP!

I think list comprehension is easier to read from left to right, starting at the first ‘for’. And we
can nest each expression. So our first expression is ‘for lst in queensList’, our next is ‘for
homegirl in lst’. So that will be

for lst in queensList
—for homegirl in lst
—–homegirl

lst will refer to the items in queensLst – that is, [“ariel”], [“belle”, “tiana], [“mulan”,
“pocahontas”, “rapunzel”]. Those are all the items in queensLst.

For each lst, we go through their items (each item is referred to as homegirl). In our list
comprehension, we simply have ‘homegirl’. So, that will just be the items in lst, with no
modification made.



So, our new list called result will have all the individual items from the nested lists in
queensLists. So, essentially, queensList was simply 'flattened', and we get back ["ariel", "belle",
"tiana", "mulan", "pocahontas", "rapunzel"].

For each number in the list inputNums, we calculate two things: num % 3 (stored as result1), and
(num // 10) % 3 (stored as result2). We then use result1 and result2 as indexes into myLst (a
nested list – result1 tells us which list, result2 tells us which index), and we increment that
corresponding item.

inputNum number result1 (num % 3) result2 (num // 10) % 3 myLst

13 1 1 [[0, 0, 0,], [0, 1, 0,], [0, 0, 0,]]

17 2 1 [[0, 0, 0,], [0, 1, 0,], [0, 1, 0,]]

25 1 2 [[0, 0, 0,], [0, 1, 1,], [0, 1, 0,]]

28 1 2 [[0, 0, 0,], [0, 1, 2,], [0, 1, 0,]]

10 1 1 [[0, 0, 0,], [0, 2, 2,], [0, 1, 0,]]

30 0 0 [[1, 0, 0,], [0, 2, 2,], [0, 1, 0,]]

21 0 2 [[1, 0, 1,], [0, 2, 2,], [0, 1, 0,]]

Thus, our final result is [[1, 0, 1], [0, 2, 2], [0, 1, 0]].



When sorting nested lists, Python compares the first item of each list to each other, considering
only later items in case of a tie. In our case, the first items are “blossom”, “bubbles,” and
“buttercup”. This essentially boils down to a string comparison. Among the three, “blossom” has
the lowest lexicographic order, so the list containing “blossom” will be the first in the sorted list.
Although “bubbles” and “buttercup” share the same first two characters, when comparing the
third, ‘b’ in “bubbles” is less than “t” in “buttercup”. Consequently, “bubbles” has a lower
lexicographic order than “buttercup”, so we place the list with “bubbles” in it next, followed by
the list with “buttercup”.

When comparing nested lists to find which is greater, Python will compare the items at each
index. Thus, the first comparison it makes will be between [1, -100] and [1, -900]. These two
items are equal to each other in their first index, so we look at the second index. The first list is
greater than the second here (-100 > -900), which means that ls1 > ls2 will evaluate to True.



Because we have a double for loop, both going from 0 to 3 (because range(len(board)) is simply
range(4) → [0, 1, 2, 3]), this code snippet iterates over all rows and columns of board. Our
condition is ‘if i == j’, so this will print when i and j are both 0, 1, 2, and 3. We print board[0][0],
board[1][1], board[2][2], and board[3][3], which are “H”, “O”, “N”, and “K”.

This is list comprehension! Again, we can maybe ‘read’ this easier if we read starting from the
first ‘for’.

for group in sanrio
—group[0]

So, for each item (referred to as ‘group’) in the list sanrio, we will index into it at position[0].
This will refer to “keroppi”, “pompompurin”, and “chococat” – these items are all put into a new
list from our list comprehension.



looney[-1] will get us the last item in the looney list. This will be [“tweety”, “sylvester”, “lola”].
Indexing [-2] will get us back “sylvester”. This item can be indexed, because it is a string, so
indexing [0] will get us back the first character, “s”.

This question looks daunting, but I promise that it isn’t!

Let’s walk through it, step by step. Our double for loop will simply iterate through each
individual item in myNums. Our outer loop is range(len(myNums)), or range(3) → [0, 1, 2]. Our
inner loop is range(4) → [0, 1, 2, 3]. And each iteration, we test the condition ‘if not j % 2’. j%2
gets us either 0 or 1, and we use this result as a boolean. When we apply ‘not’ to 0 (False), we
get 1 (True), meaning that this ‘if not j %2’ condition will trigger only when j % 2 evaluates to 0.

if not j % 2
if not 0
if not False
if True

So, for each item in our list, we check to see if its index % 2 is 0. If so, we add it to total.
Because j can take on values [0, 1, 2, 3], the only numbers that get us 0 when we do % 2 will be
0 and 2. So throughout the loop, we simply sum the items in the inner lists that are at index 0 or
2. This is 1 + 3 + 5 + 7 + 9 + 11, which is 36.


