
CS303E Week 7 Worksheet: Objects and Classes

Name: EID:

Read the questions carefully, and answer each question in the space provided. Use scratch

paper to do your work and then copy your answers neatly and legibly onto the test paper.

Only answers recorded on the test paper will be graded.

1. (11 points: 1 point each) The following are true/false questions. Write either T

or F in the boxes at the bottom of page 1. If there’s any counterexample, it’s

false.

(a) Python allows you to create a class without any attributes or methods.

(b) Variables defined in a class’s init require the "self" prefix to be recognized

as an instance attribute.

(c) All user-defined classes in Python are mutable.

(d) In Python, if a class’s str method is not defined, you can directly print an

object of that class.

(e) In Python, it is possible to create an instance of a user-defined class without

explicitly defining a constructor (init) method.

(f) All attributes of a class in Python can be accessed and modified from outside

the class.

(g) Modifying an attribute of one instance of a class a↵ects the same attribute in

all other instances of that class.

(h) When creating a class object, it is necessary to explicitly provide values for all

instance attributes.

(i) In Python class method definitions, "self" is a reference to a class instance,

and using ’self’ allows the method to access the attributes of that particular

instance.

(j) You can change the class of an object after it has been created in Python.

(k) In Python, if a class defines attributes in its init method, all instances of

that class will have those attributes.

a b c d e f g h i j k

.

Page total: /11

Dewayne Benson
T T T T T F F F T F T

Dewayne Benson
Not true! Remember default parameters? Example: homework 7, the Student class had a default parameter (0) for the exam grades, so we could make a Student by only providing the name.

Dewayne Benson
I guess technically not true, if you’re doing error checking in your __init__
and returning early/before the attributes are created, but for the intent of
our class, yes, this is true. =)

CS303E Week 7 Worksheet: Objects and Classes 2

Questions 2-7 are multiple choice. Each counts 2 points. Write the letter of the

BEST answer in the box on the next page. Please write your answer in

UPPERCASE. Each problem has a single answer.

2. Why does the str method in Python need to return strings instead of using

print() directly?

A. Using print() within str would cause an infinite loop, because print im-

plicitly calls str .

B. The str method is used for the creation of the string to print, not for the

printing itself.

C. print() can only be used within the constructor, not in methods.

D. Using print() in str is not erroneous but it makes the code less e�cient

and slower to execute.

3. Why are getter or setter methods useful?

A. Getter and setter methods are required to define a class.

B. For an attribute to be changed after it is initialized, a setter method is required.

C. Getter and setter methods help us understand the structure of a class.

D. Getter and setter methods provide a way to access and modify private at-

tributes of a class.

4. Which of the following is true about classes?

A. "self" can be used outside of a class to refer to specific instances.

B. Defining only the gt (greater than) and ge (greater than or equal to)

comparisons methods in a class handles all comparisons.

C. If the eq method for a class is not explicitly defined, then comparing two

instances of this class by doing X == Y will cause an error.

D. Using type() on any user-defined class will always return back ’Object’.

5. When might the result of X is Y be di↵erent from X == Y?

A. When comparing two lists that have the same elements.

B. When comparing two strings with the same content stored in di↵erent variables.

C. When comparing two integers having the same value.

D. All of the above.

E. Never; they are equivalent expressions.

F. B and C

Dewayne Benson
2A). print() does rely on __str__, but when you use print within __str__, it doesn't
automatically trigger another call to __str__. The print statement simply outputs the
string representation returned by __str__ to the console or wherever the output is directed.

Dewayne Benson
clearly not true! in HW7, getAverage (a method besides the constructor), we had a print()

Dewayne Benson
Not true! We need to return a string in a class’s __str__, otherwise the code will crash if
we try printing an instance of the class.

Dewayne Benson
Yes! __str__ is used by print() to know what to display. So, if nothing (None) is returned by __str__, Python will be confused!

Dewayne Benson
clearly not true!

Dewayne Benson
clearly not true! we can
try reading the code. LOL

Dewayne Benson
2B) Not true! A setter method takes
in a parameter and overwrites
an attribute’s value with the new value.
But for whatever reason, you might
make a class with a method that isn’t
necessarily a setter, but still modifies
class attributes. EX: a Playlist class
that has a method letting you append
something to (not overwrite) a song
list

Dewayne Benson
Yes! Without getters/setters, it’s difficult to access and change private class attributes when needed.

Dewayne Benson
5) Because strings and integers are immutable, when X and Y are both strings (or both integers) the expressions ‘X is Y’ and ‘X == Y’ will be the same. What’s going on behind the scenes: when we do something like X = “howdy” and Y = “howdy” , because strings (and ints) are immutable, Python will only make a certain string (or int) once, for optimization. And it will reuse it for any variable that happens to take on the same value. So because X and Y have the same value, and refer to the same object, ‘X is Y’ and ‘X == Y’ will both be True. But if X and Y were lists, then Python will create distinct/new objects for X and Y, because lists are mutable and can be changed. So even if two lists have the exact same items, they will be distinct objects in memory. So, ‘X is Y’ will be False, while ‘X == Y’ will be True.

Dewayne Benson
4C) Not true! when __eq__ is not defined for a class, then when we compare two instances, X == Y will be the same as X is Y

Dewayne Benson
4D) Not true! When we make a new
class, we make a new type. Also, object
is already a class in Python — it’s the
‘root’ or ‘parent’ class of everything!

Dewayne Benson
4A) False! Because when
you define functions outside
of a class, they are just
regular functions, not bound
to any particular class or
object instance. So there is
no "self" instance for them
to refer to.

Dewayne Benson
4B) True! If __gt__ and
__ge__ are defined,
but the counterparts
__lt__ and __le__ are
not defined, Python
will automatically
provide fallbacks for
the missing methods by
reversing the existing
comparisons.

CS303E Week 7 Worksheet: Objects and Classes 3

6. What is the di↵erence between functions and methods?

A. Functions and methods are interchangeable terms in Python.

B. Functions can only take one parameter, while methods can take multiple

parameters.

C. Functions can be defined independently, while methods are always associated

with a class or object.

D. Functions return values, while methods perform actions without returning any

value.

7. Which of the following scenarios benefit from creating a class in Python?

A. Building a representation of a real-world object with various measurements

and behaviors.

B. When you want to override or customize “magic methods” in Python, such as

str .

C. Grouping together specific data and and multiple functions that act on that

data.

D. To create blocks of code that perform a specific task.

E. All of the above

F. Both A and B

G. A, B, and C

2 3 4 5 6 7

Page total: /12

Dewayne Benson
B D B A C G

Dewayne Benson
Functions *and* methods can both return values!
That’s why we have getter methods in classes.

Dewayne Benson
Not true — otherwise, we’d just refer to everything as a function. But we don’t!

Dewayne Benson
We’ve seen examples of functions that require multiple parameters, such as
max() in the math library.

Dewayne Benson
Yes!!! We don’t require a class or object to call functions. But if we want
to use a method, we either need an instance of a specific class, or the class itself.

Dewayne Benson
We wouldn’t need a class for this — we can just make a function.

Dewayne Benson
Yes!! Ex: our Student class

Dewayne Benson
Yes!! If we wanted to, we could recreate already existing classes in Python,
but customize their methods like __str__ so the class behaves slightly differently.

Dewayne Benson
Yes!!!! This can help modularize our code, and organize things, because each instance would have its own data that it is keeping hold of and modifying.

CS303E Week 7 Worksheet: Objects and Classes 4

The following 8 questions require you to trace the behavior of some Python code and

identify the output of that code. For each question, write the output for the code segment

on the provided line.

class Cow:

def __init__(self, name, milkPerHour):

self.__name = name

self.__milkPerHour = milkPerHour

def makeMilk(self, hoursSpent):

gallonsMilk = self.__milkPerHour * hoursSpent

print(gallonsMilk)

def getSpeed(self):

return self.__milkPerHour

def __lt__(self, other):

return not other.getSpeed() < self.__milkPerHour

def __eq__(self, other):

return other.getSpeed() == self.__milkPerHour

8. (3 points)

moomoo = Cow("MooMoo", 20)

print(str(moomoo.getSpeed()) + moomoo.__name)

9. (3 points)

moomoo = Cow("MooMoo", 20)

elsie = Cow("Elsie", 25)

print(moomoo == elsie, moomoo < elsie, moomoo > elsie)

Page total: /6

Dewayne Benson
Error

Dewayne Benson
We’re trying to directly access a private class attribute (.__name) here, so this will cause an error.

Dewayne Benson
False True False

Dewayne Benson
The __eq__ method tells us two Cows are equal if their milkPerHour values are the same. moomoo and elsie have different milkPerHour values, so the first expression will be False. However, because moomoo has a milkPerHour of 20, and elsie has 25, moomoo < elsie will be True and moomoo > elsie will be False.

CS303E Week 7 Worksheet: Objects and Classes 5

10. (3 points)

moomoo = Cow("MooMoo", 20)

milks = moomoo.makeMilk(10)

if milks < 10:

print("Not much milk...")

else:

print("Tons of milk!")

class Doll:

def __init__(self, name):

self.name = name

def __str__(self):

return "Hi, " + self.name + "!"

def dreamhouse():

print("Come on, Barbie, let’s go party!")

def __add__(self, other):

return Doll(self.name + " (and " + other.name + ")")

11. (3 points)

barbie = Doll("Barbie")

barbie2 = Doll("Barbie")

print(str(barbie) == str(barbie2), barbie == barbie2)

12. (3 points)

barbie = Doll("Barbie")

ken = Doll("Ken")

ship = barbie + ken

print(ship)

Page total: /9

Dewayne Benson
200 Error

Dewayne Benson
Note that the makeMilk method doesn’t return — it prints. So we spend 10 hours milking moomoo, who makes 20 milks per hour. We calculate 10 * 20, print the result (which is 200), and return
None, which is stored in the variable ‘milks’.
But when we try comparing milk with 10, this will cause an error.

Dewayne Benson
True False

Dewayne Benson
Question 11:
We have two Dolls with the same name (Barbie). The
string created when we convert each Doll will be equivalent, because __str__ only relies upon the self.name variable. Thus, the first expression will be True. But the second expression will be false because when __eq__ is not defined for a class, then == will test to see if two objects are the exact same. Because barbie and barbie 2 are two separate instances, barbie == barbie2 will be False.

Dewayne Benson
Hi, Barbie (and Ken)!

Dewayne Benson
We have two Doll objects. According to the Doll __add__ method,
when we add two Dolls, we get back a new Doll that has their names
combined, in this form: dollname1 (and dollname2). So we can fill
this in for Barbie and Ken, and we obtain “Barbie (and Ken)”.
When we print this Doll, print calls the __str__ method, which will
return “Hi,” in front of the Doll’s name — “Hi, Barbie (and Ken)!”

CS303E Week 7 Worksheet: Objects and Classes 6

13. (3 points)

barbie = Doll("Barbie") # this question and the next are

barbie.dreamhouse() # only meant to get you thinking!

14. (3 points)

Doll.dreamhouse()

class smileyFace:

def __str__(self):

return "=)"

15. (3 points)

cheery = smileyFace()

print(cheery)

Page total: /9

Dewayne Benson

Dewayne Benson
=)

Dewayne Benson
Come on, Barbie, let’s go party!

Dewayne Benson
Error

Dewayne Benson
This question is intended to show you kiddos that,
even when __init__ is not defined for a class, we
can still create an instance of that class. Python
will simply use the default __init__, which requires
no parameters and creates no class attributes.

Dewayne Benson
Tricky question! But note that the dreamhouse method does not have the ‘self’ parameter. This means that we cannot call the dreamhouse method on an instance of Doll, because an instance is ‘self’, but the dreamhouse method doesn’t accept ‘self’. So if we want to call this method, we need to do so in an alternate way.

Dewayne Benson
Aha!!! This is how we can call the dreamhouse method. We can access it through the class. Because dreamhouse doesn’t require an instance, we simply specify the class it is in, and we can call it directly. So, we call methods like dreamhouse class methods!

Dewayne Benson
Fun fact:
barbie.dreamhouse()
is the same as
Doll.dreamhouse(barbie)

Maybe that makes it
clearer why this causes
an error? (because
we’re implicitly providing
the ‘self’ parameter when
the method doesn’t allow for one)

