
Worksheet #8 More on Strings Answer Key =)

TRUE/FALSE

Notes:
(C) Remember that strings are immutable! So this would cause an error.
(D) This will cause an index out of bounds error. Remember that the last character in our string
has index len(s) - 1 (ex: “pluto” has 5 characters, indices 0 through 4). A range(len(s) + 1) loop
when s = “pluto” would be range(6) and include [0, 1, 2, 3, 4, 5] ← on the last iteration, an error
would occur )
(I) counterexample: when s is only one character, its min and max character will be the same.



MULTIPLE CHOICE

Correct answer explanation:
(A) Yes, we can multiply strings in Python (so it is not (D), an error)! “oink oink” * 2 will result
in “oink oinkoink oink”. We then concatenate “ oink” onto this, resulting in “oink oinkoink oink
oink”, resulting in (A).

Correct answer explanation:



(A) .find() returns the index of the first occurrence of the specified character (or substring). If
there is no occurrence, .find() returns -1. “Teehee” has “e” in it, so the answer cannot be (E) -1.
We will return the index of the first “e”, which is (A) 1.

Correct answer explanation:
(B) ‘in’ is used for this purpose. We can do expressions like “‘a’ in ‘abracadabra’”, for instance,
to return a boolean.

Wrong answer explanations:
(A) contains is not correct because contains is actually a method (we could do
“abracadabra”.contains(“a”) ).
(C) and (D) are not real operators.

Correct answer explanation:
(D) Given string s, .replace() will substitute out any occurrence of one substring, with another
specified substring. In this case, we’re substituting whitespace “ “ with “” (empty string). We
know that since the string “Basil and Wybie =)” has three spaces, the length of the new string
will be shortened by 3. (for what it’s worth, the new string is simply “BasilandWybie=)” length
15 compared to the original 18).



Correct answer explanation:
(D) We also know that strings can be converted to ints by doing something like int(“52”), and of
the four answer choices A, B, C, D, D is the only truthful answer.

Wrong answer explanations:
(A) Not true! We’ve had many strings in homework assignments with colons and periods (like,
“Enter name: ”)
(B) Not true! Remember that strings are immutable, so once they are created they cannot be
changed.
(C) is almost correct, but you can use single quotes to enclose a string. For example: “Toodles
=)” and ‘Toodles =)’ are both valid. However, this question asserts that only the former is
correct, which is false.
(E) because (C) is incorrect, (E) cannot be correct.

Correct answer explanation:
(B) Yes! .replace() is a method that requires two arguments: the substring you want to find in a
string, and the substring with which you want to replace it. Technically, you can remove all
whitespace in a string by doing .replace(“ “, “”). That would replace any space with the empty
string. But, because .replace() does more than that, (A) still isn’t exactly correct.



Correct answer explanation:
(F) Because (C), (D), and (E) are all true, (F) is correct.

(C) ‘for i in range(-len(S), 0, +1)’ will traverse the string from left to right using negative indices.
For example: “howdy”, letter:index combos are
h:0, o:1, w:2, d:3, y:4.
But using negative indices, these become
h:-5, o:-4, w:-3, d:-2, y:-1.

So, -len(S) is -5. Thus, range(-len(S), 0, +1) is the same as range(-5, 0, 1). The 1 is simply our
step parameter which signifies that the difference between each number in our range is 1. So, our
range starts at -5 and goes up to (but does not include) 0, meaning our range is [-5, -4, -3, -2, -1]
– the negative indices of “howdy”. These indices are characters h, o, w, d, y.

(D) range() has a default value of 1 for the step parameter. So, (D) ‘for i in range(-len(S), 0)’ is
the same as ‘for i in range(-len(S), 0, 1)’.

(E) ‘for i in range(-l, -len(S) - 1, -1)’ will traverse the string from right to left using negative
indices. Using “howdy” as an example again…

-len(S) is -5, so our range is range(-1, -6, -1). The second -1 here is our step parameter, which
indicates that the numbers in our range are descending (decrement 1 between each). So, we our
range starts at -1, and goes down to (but does not include) -6, meaning our range is [-1, -2, -3, -4,
-5] – negative indices of “howdy”. These indices are characters y, d, w, o h.

Wrong answer explanations:
(A) this will not iterate over the string using indices. Because our loop is ‘for char in S’, we
iterate directly over S, so each iteration of the loop char will refer to a character in S.
(B) range(len(S)) will only contain non-negative numbers. For example, when s = “dollyParton”,



len(S) is 11. range() has a default starting parameter of 0, so range(len(S)) is equivalent to
range(0, 11) which is numbers [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Correct answer explanation:
(C) This will always be true. We simply obtain all characters in s, starting from index 0 to len(s) -
1 (recall that slicing is exclusive of the last character, similar to range() ). This is the whole
length of s, so s[0:len(s)] simply recreates string s.

Wrong answer explanations:
(A) ord() only takes a single character (or else it causes an error). The question only specified
that s was a string, not that s was a string consisting of a single character. So if s has multiple
characters, (A) will be erroneous.
(B) s.upper().lower() converts the whole string to lowercase, but it’s possible that s was entirely
uppercase before. For example, s = “SILLYGOOSE”. s.upper().lower() will be “sillygoose”.
(D) Cannot be correct because A and B are both incorrect

TRACING



This is a fun one!

OK – we make a new string, initially empty. And we iterate through the characters in s and add
onto our new string. We convert each character in s to its ASCII value, subtracting three, and
then adding the resulting character to our new string. This just means that each character in the
original string is shifted three positions backward in the alphabet. So, three characters before “v”
is “s”, three characters before “p” is “m”, etc. The following table shows all the conversions.

Original Character Character 3 before

v s

p m

d a

u r

w t

F C

r o

r o

n k

l i

h e



After appending all the converted characters to our string new, we get “smartCookie”. Yes, YOU
are a smart cookie for solving this question! =)

This is a fun question, too!

OK – we iterate over string s, but depending on what the current character is, we’ll add on
something different to our result string (initially empty).

The ‘if’ condition here is ‘if char in str(not s)’. Because s is a string with characters in it, not s
will be False. So, str(not s) will be “False”. So this if condition really just evaluates to “if char in
‘False’ “. If the current character we’re at is “F”, “a”, “l”, “s”, or “e”, then instead of adding that
character, we will instead add “B” to the result.

elif char.isalpha() – this is just saying, else if the character is any other alphabetical letter, then
we’ll add the uppercase version of it to the string.

elif char.isdigit() – this says, else if the character is a number, we’ll convert it to an int, so that we
can add 5 to it, and then we’ll convert the outcome back to a string and add that to our result.

else: we just add the character with no modification made

The following table shows the adjustments that are made for each character in s.



Character Branch Triggered Adding to Result Result string

S elif char.isalpha() S S

i elif char.isalpha() I SI

l if char in str(not s) B SIB

l if char in str(not s) B SIBB

y elif char.isalpha() Y SIBBY

G elif char.isalpha() G SIBBYG

o elif char.isalpha() O SIBBYGO

o elif char.isalpha() O SIBBYGOO

s if char in str(not s) B SIBBYGOOB

e if char in str(not s) B SIBBYGOOBB

- else - SIBBYGOOBB-

7 elif char.isdigit() 12 SIBBYGOOBB-12

8 elif char.isdigit() 13 SIBBYGOOBB-1213

1 elif char.isdigit() 6 SIBBYGOOBB-12136

Thus, our final result is SIBBYGOOBB-12136.

Practice with negative indices!!! Fun!!!



For reference, here are the letter:index pairs for s (which has length 11).
s (oompaLoompa): o:0, o:1, m:2, p:3, a:4, L:5, o:6, o:7, m:8, p:9, a:10

However, we're using negative indexes here. Oops. So, negative indices for oompaLoompa
would be o:-11, o:-10, m:-9, p:-8, a:-7, L:-6, o:-5, o:-4, m:-3, p:-2, a:-1

OK. So when we slice to obtain s[-len(s):-len(s) + 5], this is equivalent to s[-11:-6]. So we get all
character starting at index -11, and up to (but not including) index -6. This is “oompa”.
We then add on a space. And then we slice to get s[-6:]. This gives us the characters starting at
index -6, and going to the end of the string – so, “Loompa”.

Thus, our final result is “oompa Loompa”.

The movie was SO iconic!

OK, so we have a handful of strings, and we do two checks on each string and store the results.
Let’s walk through them:

sandy = patrick.islower() and patrick[999:9999] == “”

.islower() will check whether all of the alphabetic characters in the string are lowercase. In other
words, numbers will not cause this to be False. Because patrick is “krus7ykr4b”, all of the
alphabetic characters are lowercase. Also, remember that when we slice out of bounds (using
indices longer than the string), we don’t get an error. We simply get the empty string. Thus,
sandy will be True and True, which evaluates to True.



squidward = gary.isalnum() and gary.isdigit()

.isalnum() checks whether the string only consists of alphabetic and or numeric characters. But
because gary is “+25”, gary.isalnum() will be False (due to the + not being alphabetic or
numeric). Now we know squidward is

False and gary.isdigit()

Which evaluates to False immediately (short-circuit evaluation, huzzah!!). But for what it’s
worth, gary.isdigit() is also False, also because of the + not being a numeric character. So,
squidward is False and False, which evaluates to False.

mrKrabs = spongebob[6:8].isdigit() and spongebob.count(“o”) == 2

spongebob is “goofyg00ber”. So, spongebob[6:8] is “00”. (indexing [6:8] will get us indices 6
and 7, which are the 7th and 8th characters in the string. Remember 0-based indexing!) Thus,
spongebob[6:8].isdigit() will be True. And “goofyg00ber” has exactly 2 “o” in it, so
spongebob.count(“o”) will be True. Thus, mrKrabs is True and True, which evaluates to True.

This question is intended to show folks that changes made to strings passed to functions do not
persist. We pass thing1 and thing2 (“greenEggs” and “Ham”) to catInTheHat. catInTheHat adds
overwrites thing1 by adding it and thing2 together. It then sets thing2 to this updated thing1. At
this point within the function, thing1 and thing2 are both “greenEggsHam”, hence the print
displaying True.



However, these changes to thing1 and thing2 do not “stick” after the function, because strings are
immutable. When we modified those strings, we were only updating local variables. When we
print string1 and string2 after the function, they will still be “greenEggs” and “Ham”.

This question is intended to show you kiddos that slicing with strings will not cause index out of
bounds errors. Although myGuineaPig only has up to index 4, we specify an ending index of
1000 (well, 999, really, because slicing is exclusive of the end, but… semantics). But this doesn’t
crash our program – we simply get the entirety of the string, and no more. So we get back
“Jerry”, multiply by 2, and our result is “JerryJerry”.

My FAVORITE question out of any of these worksheets!! If you know, you know ♥

We assign the string "castiel" to the variable alpha and "dean" to the variable beta. To form
omega and sigma, we use string slicing. The letter:index pairs for "castiel" (alpha) and "dean"
(beta) are:

alpha (castiel): c:0, a:1, s:2, t:3, i:4, e:5, l:6
beta (dean): d:0, e:1, a:2, n:3



omega is created by combining the characters in beta up to the second index ("de") with the
characters in alpha starting at the second index ("stiel"). This results in the string "destiel".

sigma is formed by taking the characters in beta up to the length of beta. Since len(beta) is 4,
beta[:4] gives us the entire string "dean". We append this to the characters in alpha up to the third
index ("cas"). This results in the string "deancas".

We then find the minimum and maximum between omega and sigma. To do this, we compare
their lexicographic ordering (think which one would come first in a dictionary). We compare the
first characters in omega (“destiel”) and sigma (“deancas”) – both “d”. We then compare their
second characters – both “e”. We then compare their third characters. omega has “s” and sigma
has “a”. Thus, sigma has a lower lexicographic ordering than omega, so min(omega, sigma) will
be sigma and max(omega, sigma) will be omega. This means we will print deancas destiel.


