
Elements of Security
Program Security and Viruses

Dr. Bill Young
Department of Computer Sciences

University of Texas at Austin

Last updated: April 28, 2015

Slideset 10: 1 Program Security and Viruses

Classifying Bugs

The IEEE (IEEE standard 729) has suggested a standard
terminology for “bugs” in computer programs.

Fault: a fault is a defect that gives rise to an error. It could
be due to defective, missing or extra instructions, or
a manufacturing flaw in hardware.

Error: a detectable deviation from the agreed specification
or requirements. An error is caused by a fault and
may lead to a failure.

Failure: the delivered service deviates from the specified
service, where the service specification is an agreed
description.

Slideset 10: 2 Program Security and Viruses

Parhami’s Taxonomy

Behrooz Parhami gives the following expanded taxonomy of system
states:

Ideal: the program perfectly meets its specification.

Defective: there is some flaw in the hardware or software.

Faulty: certain system states may expose the defect,
resulting in incorrect values or decisions.

Erroneous: the fault is actually exercised, leading to an error.

Malfunction: an error may cause observed deviation from the
specification.

Degraded: perceivable service-level effoect

Failure: catastrophic or unsafe system behavior, or
termination of system action.

Slideset 10: 3 Program Security and Viruses

Fixing Faults

Number of faults detected and fixed is not a reliable measure of
software quality. Hence, the paradigm of penetrate and patch is
not a good way to build secure systems.

Patch efforts often make a system less secure than before, because
the patches introduce new faults.

Effort focuses narrowly on the fault without correcting the
underlying design or requirements flaws.

A fault may have nonobvious side effects far removed from
the location of the fault.

A fault may not be fixed properly because it would impact
system functionality or performance.

Slideset 10: 4 Program Security and Viruses

Security Flaws

Program security flaws can arise from many different types of
faults, including intentionally malicious code, and code developed
in sloppy or misguided ways. We often divide program flaws into
these two categories.

Intentional attacks (called cyber attacks) get more press, but

inadvertant errors undoubtedly cause much more damage.

Slideset 10: 5 Program Security and Viruses

Eliminating Security Flaws

It is probably impossible to completely eliminate security flaws.

1 Program controls operate at the level of individual programs
and programmers. Security is a system-wide phenomenon that
results from the complex interaction of many parts of the
system.

2 Software engineering evolves more quickly than does computer
security. That means that security is always trying to catch up
with the state of the art in software design.

Slideset 10: 6 Program Security and Viruses

OWASP Top 10 Web Vulnerabilities

The Open Web Application Security Project (OWASP) is a
worldwide free and open community focused on improving the
security of application software. They regularly publish a 10 top
list of security vulnerabilities for web applications. Below is a
recent list:

Cross Site Scripting (XSS): XSS flaws occur whenever an
application takes user supplied data and sends it to a
web browser without first validating or encoding that
content.

Injection Flaws: Injection occurs when user-supplied data is sent to
an interpreter as part of a command or query. The
attacker’s hostile data tricks the interpreter into
executing unintended commands or changing data.

Slideset 10: 7 Program Security and Viruses

OWASP Top 10 Web Vulnerabilities

Malicious File Execution: Code vulnerable to remote file inclusion
(RFI) allows attackers to include hostile code and
data, resulting in devastating attacks, such as total
server compromise.

Insecure Direct Object Reference: A direct object reference occurs
when a developer exposes a reference to an internal
implementation object, such as a file, directory,
database record, or key, as a URL or form parameter.

Cross Site Request Forgery (CSRF): A CSRF attack forces a
logged-on victim’s browser to send a
pre-authenticated request to a vulnerable web
application, which then forces the victim’s browser to
perform a hostile action to the benefit of the
attacker.

Slideset 10: 8 Program Security and Viruses

OWASP Top 10 Web Vulnerabilities

Information Leakage and Improper Error Handling: Applications
can unintentionally leak information about their
configuration, internal workings, or violate privacy
through a variety of application problems. Attackers
use this weakness to steal sensitive data, or conduct
more serious attacks.

Broken Authentication and Session Management: Account
credentials and session tokens are often not properly
protected. Attackers compromise passwords, keys, or
authentication tokens to assume other users’
identities.

Insecure Cryptographic Storage: Web applications rarely use
cryptographic functions properly to protect data and
credentials. Attackers use weakly protected data to
conduct identity theft and other crimes, such as
credit card fraud.

Slideset 10: 9 Program Security and Viruses

OWASP Top 10 Web Vulnerabilities

Insecure Communications: Applications frequently fail to encrypt
network traffic when it is necessary to protect
sensitive communications.

Failure to Restrict URL Access: Frequently, an application only
protects sensitive functionality by preventing the
display of links or URLs to unauthorized users.

Slideset 10: 10 Program Security and Viruses

Nonmalicious Program Errors

Landwehr et al. give a taxonomy of program flaws that might
result in security lapses. The inadvertant flaws fall into the
following categories:

validation error (incomplete or inconsistent)

domain error

serialization or aliasing

inadequate identification or authentication

boundary condition violation

other exploitable logic errors

Slideset 10: 11 Program Security and Viruses

Validation: Buffer Overflow

A buffer is a bounded memory space in which data is held. Writing
beyond the end of a buffer may:

be detected by the compiler or run-time system;

may effect adjacent user data space;

may effect adjacent user program space;

may effect adjacent system data space;

may effect adjacent system program space.

An overflow into system space may allow an attacker to insert
system code running at system permission level, modify the call
stack, etc. Both the Internet worm (1988) and the Code Red virus
(2001) used buffer overflow in critical ways.

Slideset 10: 12 Program Security and Viruses

Smashing the Stack

Buffer overflows account for over 50% of advisories published by
CERT (computer security incident report team):

Morris worm (1988): overflow in fingerd, infected 10% of the
existing Internet.

Code Red (2001): overflow in MS-IIS server, 300,000 machines
infected in 14 hours.

SQL Slammer (2003): overflow in MS-SQL server, 75,000
machines infected in 10 minutes.

Slideset 10: 13 Program Security and Viruses

Attacks on Buffers

A buffer is a data storage area inside memory (stack or heap).

Buffers are intended to hold a pre-defined amount of data. If
more is stuffed into it, it may spill into adjacent memory.

If executable code is supplied as “data,” the machine may be
fooled into executing it.

An attack can exploit any memory operation: pointer assignment,
format strings, memory allocation and de-allocation, function
pointers, calls to library routines.

Why are buffer overflows more prevalent in C than in Java? Is the
solution to just use Java instead of C?

Slideset 10: 14 Program Security and Viruses

Stack Buffers

Consider the following function:

void func (char *str) {

char buf[126];

strcpy (buf, str);

}

When this function is invoked, a new frame is pushed onto the
stack.

buffer sfp ret
addr str Frame of the

calling function TOS

Stack grows this way

Slideset 10: 15 Program Security and Viruses

Stack Buffers

If a string longer than 126 bytes is copied into buffer, it will
overwrite adjacent stack locations, including the frame pointer and
return address.

If buffer value contains attacker-generated code and ret addr
points into this code, the attacker can cause this to be executed.

If the running program has root privileges, so will the new code.
The attacker can, e.g., spawn a new shell with root privilege.

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

Frame of the
calling function TOS

Stack grows this way

buffer sfp straddrret

Slideset 10: 16 Program Security and Viruses

Overflow Issues

Why not just make the stack non-executable? There are some
circumstances where we want to treat data as code.

Overflow portion of the buffer must contain the correct
address of the attack code in the RET position. This is harder
than it seems.

Many C functions do not check input size: strcpy, strcat, gets,
scanf, printf, ...

Slideset 10: 17 Program Security and Viruses

Overflow Attacks

In addition to buffers on the stack, there are related attacks:

overflow of buffers allocated on the heap may change pointers
to important data or cause a crash;

function pointer overflow may cause an alternative function to
be executed;

integer overflow of a variable used in a bounds computation
may facilitate an attack.

Slideset 10: 18 Program Security and Viruses

Incomplete Mediation

Suppose you fill out a form on a web page. The result may be
packaged and sent to the server side as, for example:

http://www.somesite.com/subpage/userinput

&parm1=(808)555-1212&parm2=2004Jan01

What happens if you insert nonsense for the parameters clearly
intended to contain a phone number and date?

If the values are checked on the client side (i.e., by code in the
browser), the data fields may still be tampered with before the line
is sent. The data is not completely mediated.

Slideset 10: 19 Program Security and Viruses

Time-of-Check / Time-of-Use

If a security access check is performed significantly before the
access is actually performed, an attacker may perform a “bait and
switch.” This is also called a serialization or synchronization flaw.

Suppose a user presents a request in the form of a pair: [file-name,
access]. The system checks whether the access is allowed. If the
pair is left in user space, the user might alter the file name while
the access check is occurring, and obtain access to a file for which
he does not have appropriate permissions.

This is a particular concern in capability-based systems, in which
users maintain “tickets” granting them access rights. These tickets
must be unalterable and unforgeable.

Slideset 10: 20 Program Security and Viruses

Malicious Code

The Computer Emergency Response Team (CERT) at Carnegie
Mellon University, tracks vulnerabilities and attacks.

Period Vulnerabilities Incidents

1998 262 3,734
1999 417 9,859
2000 1,090 21,756
2001 2,437 52,658
2002 4,129 82,095
2003 3,784 137,529
2004 3,780 **
2005 5,990 **
2006 8,064 **

“** Given the widespread use of automated attack tools, attacks ... have

become so commonplace that counts of the number of incidents provide little

information with regard to assessing the scope and impact of attacks.”

Slideset 10: 21 Program Security and Viruses

Malicious Code (Cont.)

Malicious code (viruses, worms, etc.) runs with the permissions of
the user or operating system, and can do anything that a legitimate
user can do–create files, write to files, delete data and files, etc.

It may also sit dormant until triggered by some event, including
reaching a certain time.

Slideset 10: 22 Program Security and Viruses

Malicious Code Taxonomy

Malicious code or a rogue program is the generic name for
unanticipated or undesired effects in programs, caused by an agent
intent on damage. The agent is the author or distributor of the
program.

Virus: a program that can pass on malicious code to other
nonmalicious programs by modifying them.

A transient virus runs when its attached
program executes and terminates when the
attached program ends.
A resident virus locates itself in memory and
can run as a stand-alone program.

Trojan horse: malicious code that, in addition to its primary effect,
has a second, nonobvious malicious effect.

Slideset 10: 23 Program Security and Viruses

Malicious Code Taxonomy

Logic bomb: class of code that “detonates” on a specific trigger.

Time bomb: logic bomb whose trigger is a time or date.

Trapdoor or backdoor: program to allow access other than by the
obvious, direct call, perhaps with special privileges.

Worm: program that spreads copies of itself through a
network.

Rabbit: virus or worm that replicates without bound, with the
intention of exhausting system resources.

Slideset 10: 24 Program Security and Viruses

How Viruses Attach

For a virus to operate, it must be executed. There are many ways
to ensure that virus code will be executed.

The virus may be resident within the code of another
program. When execution reaches that point in the code, the
virus code is executed.

The virus can be embedded in an executable attachment to
an email message.

The execution might be triggered by a specific time or event.

Slideset 10: 25 Program Security and Viruses

How Viruses Attach

The virus may be appended at the beginning of a program.
When the program is invoked, the virus runs first, and then
may transfer control to the original program.

The virus may surround a program, i.e., have portions both
before and after the program to ensure that it regains control
after the program runs.

The virus may be integrated into the program, altering the
functionality of the program. This requires intimate
knowledge of the program structure.

Slideset 10: 26 Program Security and Viruses

Qualities of Viruses

A virus writer may strive for some subset of the following
characteristics:

It is hard to detect.

It is not easily destroyed or deactivated.

It spreads infection widely.

It can reinfect its home program or other programs.

It is easy to create.

It is (relatively) machine independent and OS independent.

Most viruses execute only once, and do their damage during this
execution.

Slideset 10: 27 Program Security and Viruses

Boot Sector Viruses

The bootstrap loader is a small piece of code that runs when your
machine is rebooted. The goal is to load the operating system
from disk, often by “chaining” together blocks. Each block loaded
contains the location of the subsequent block.

A boot sector virus interrupts the chain and causes loading of
virus code rather than regular OS code. This has the following
effects:

The virus seizes control of the OS very early and has complete
control of the machine.

Since OS files are often made invisible to ordinary users, the
take-over may go unnoticed.

Slideset 10: 28 Program Security and Viruses

Memory-Resident Viruses

Most programs are swapped into memory to run. After they run,
the space is re-used for other programs. Some OS routines run so
frequently that they are kept in memory. These are called TSR’s or
“terminate and stay resident” routines.

A virus that infects a TSR is guaranteed to be activated many
times. This is useful if the purpose of the virus is to infect media
that may be mounted and removed. Eg., each time the virus runs,
it can check whether any disk, floppy, CD, etc. has been mounted
and, if so, infect that medium.

Slideset 10: 29 Program Security and Viruses

Other Homes for Viruses

A virus may infect:

Application Programs such as word processors and
spreadsheets. These often have startup macros executed each
time the application is invoked.

Libraries may be used by many other programs, and shared
and transmitted by many users.

Other applications such as compilers, loaders, linkers, runtime
monitors, debuggers and even virus control programs, may be
infected and shared widely.

Slideset 10: 30 Program Security and Viruses

Virus Effects and Causes

Virus Effect How it is Caused

Attach to executable program Modify file directory
Write to executable program file

Attach to disk or control file Modify directory
Rewrite data
Append to data
Append data to self

Remain in memory Intercept interrupt
Load self into nontransient memory

Infect disks Intercept interrupt
Intercept OS call (format disk, eg.)
Modify system file
Modify ordinary executable program

Slideset 10: 31 Program Security and Viruses

Virus Effects and Causes

Virus Effect How it is Caused

Conceal self Intercept system calls and falsify result
Classify self as “hidden” file

Spread infection Infect boot sector
Infect systems programs
Infect ordinary programs
Infect data programs use to control execution

Prevent deactivation Activate before deactivating program
Store copy to reinfect after deactivation

Slideset 10: 32 Program Security and Viruses

Detecting Viruses

Detecting viruses is undecidable, in general. Nevertheless, virus
scanners look for signatures, certain recognizable patterns.

Common text strings: once a virus has been identified, it may be
recognized by a characteristic string in the code.

Storage patterns: a virus that attaches to a file may cause the file
size to grow in a predictable way, or may invalidate
the checksum of the file.

Execution patterns: nonstandard patterns of creation or deletion of
files may signal the presence of a virus.

Slideset 10: 33 Program Security and Viruses

Detecting Viruses

To avoid detection some virus writers use multiple forms of the
virus, so that the virus scanner may have to look for a different
signature for each form. Such viruses are called polymorphic.

Some ways to fool scanners include:

Reorder the virus code, using JUMPs between blocks.

Intersperse harmless instructions randomly throughout the
code.

Encrypt copies of the virus using different keys. In this case,
the call to the decryption library routine must be in the clear
and can serve as a signature.

Slideset 10: 34 Program Security and Viruses

Preventing Infection

The following are some techniques for avoiding infection:

Use only commercial software acquired from reliable vendors.

Test all new software on an isolated computer.

Open attachments only when you know them to be safe.

Make a recoverable system image and store it safely.

Make and retain backup copies of executable system files.

Use virus detectors regularly and update them daily.

Slideset 10: 35 Program Security and Viruses

