
CS429: Computer Organization and Architecture

Bits and Bytes

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: February 3, 2020 at 14:57

CS429 Slideset 2: 1 Bits and Bytes

Topics of this Slideset

There are 10 kinds of people in the world: those who understand
binary, and those who don’t!

Why bits?
Representing information as bits

Binary and hexadecimal
Byte representations : numbers,
characters, strings, instructions, etc.

Bit level manipulations

Boolean algebra
C constructs

CS429 Slideset 2: 2 Bits and Bytes

It’s Bits All the Way Down

Great Reality 7: Whatever you plan to
store on a computer ultimately has to be
represented as a finite collection of bits.

That’s true whether it’s integers, reals,
characters, strings, data structures,
instructions, programs, pictures, videos,
etc.

That really means that only discrete quantities can be represented
exactly. Non-discrete (continuous) quantities have to be
approximated.

CS429 Slideset 2: 3 Bits and Bytes

Why Binary? Why Not Decimal?

Base 10 Number Representation.

Fingers are called as
“digits” for a reason.
Natural representation for
financial transactions.
Floating point number
cannot exactly represent
$1.20.

Even carries through in scientific notation: 1.5213 × 104

If we lived in Homer Simpson’s world, we’d all use octal!

CS429 Slideset 2: 4 Bits and Bytes

Why Not Base 10?

Implementing Electronically

10 different values are hard to store. ENIAC (First electronic
computer) used 10 vacuum tubes / digits

They’re hard to transmit. Need high precision to encode 10
signal levels on single wire.

Messy to implement digital logic functions: addition,
multiplication, etc.

CS429 Slideset 2: 5 Bits and Bytes

Even Bits are an Abstraction!

Base 2 Number Representation

Represent 1521310 as 111011011011012

Represent 1.2010 as 1.0011001100110011[0011]2
Represent 1.5213 × 104 as 1.11011011011012 × 213

Electronic Implementation

Easy to store bits with bistable elements.
Reliably transmitted on noisy and inaccurate wires.

CS429 Slideset 2: 6 Bits and Bytes

Representing Data

To store data of type X,
someone had to invent a
mapping from items of type X
to bit strings. That’s the
representation mapping.

In a sense the representation is
arbitrary. The representation is
just a mapping from the
domain onto a finite set of bit
strings.

The mapping should be one-one, but not necessarily onto. But
some representations are better than others. Why would that be?
Hint: what operations do you want to support?

CS429 Slideset 2: 7 Bits and Bytes

Some Representations

Suppose you want to represent the finite set of natural numbers
[0 . . . 7] as 3-bit strings. Would 2-bit strings work?

Dec. Rep1 Rep2

0 101 000

1 011 001

2 111 010

3 000 011

4 110 100

5 010 101

6 001 110

7 100 111

Why is one of these representations is “better” than the other?
Hint: How would you do addition using Rep1?

CS429 Slideset 2: 8 Bits and Bytes

Representing Data

A “good” mapping will map X data onto bit strings (B) in a way
that makes it easy to compute common operations on that data.
I.e., the following diagram should commute, for a reasonable
choice of conc-op.

X X

B B

✲

✲❄

✻

rep rep−1

abs-op

conc-op

CS429 Slideset 2: 9 Bits and Bytes

Representing Data: Integer Addition

i n t x ;
i n t y ;
. . .
t = x + y ;

To carry out any operation at the C level means converting the
data into bit strings, and implementing an operation on the bit
strings that has the “intended effect” under the mapping.

int int

bits bits

✲

✲❄

✻

T2B B2T

+

TAdd

CS429 Slideset 2: 10 Bits and Bytes

Representing Data

Important Fact 1: If you are going to represent any type in k
bits, you can only represent 2k different values.

Important Fact 2: The same bit string can represent an integer
(signed or unsigned), float, character string, list of instructions,
address, etc. depending on the context. How do you represent the
context in C?

CS429 Slideset 2: 11 Bits and Bytes

Bits Aren’t So Convenient

Since it’s tedious always to think in terms of bits, we group them
together into larger units. Sizes of these units depends on the
architecture / language.

CS429 Slideset 2: 12 Bits and Bytes

Bytes

Byte = 8 bits
Which can be represented in various
forms:

Binary: 000000002 to 111111112

Decimal: 010 to 25510

Hexadecimal: 0016 to FF16

Base 16 number representation
Use characters ’0’to ’9’ and ’A’
to ’F’
Write FA1D37B16 in C as
0xFA1D37B or 0xfa1d37b

BTW: one hexadecimal digit represents
4 bits (one nybble).

Hex Dec Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

CS429 Slideset 2: 13 Bits and Bytes

Memory as Array

Note: this picture is appropriate for a 32-bit, big endian machine.
How did I know that?

CS429 Slideset 2: 14 Bits and Bytes

Byte-Oriented Memory Organization

Conceptually, memory is a very large array of bytes.

Actually, it’s implemented with hierarchy of different memory
types.

SRAM, DRAM, disk.
The OS only allocates storage for regions actually used by
program.

In Unix and Windows, address space private to particular
“process.”

Encapsulates the program being executed.
Program can clobber its own data, but not that of others.

CS429 Slideset 2: 15 Bits and Bytes

Byte-Oriented Memory Organization

Compiler and Run-Time System Control Allocation

Where different program objects should be stored.

Multiple storage mechanisms: static, stack, and heap.

In any case, all allocation within single virtual address space.

CS429 Slideset 2: 16 Bits and Bytes

Machine Words

Machines generally have a specific “word size.”

It’s the nominal size of addresses on the machine.

Most current machines run 64-bit software (8 bytes).

32-bit software limits addresses to 4GB.
Becoming too small for memory-intensive applications.

All x86 current hardware systems are 64 bits (8 bytes).
Potentially address around 1.8X1019 bytes.

Machines support multiple data formats.

Fractions or multiples of word size.
Always integral number of bytes.

X86-hardware systems operate in 16, 32, and 64-bit modes.

Initially starts in 286 mode, which is 16-bit.
Under programmer control, 32- and 64-bit modes are enabled.

CS429 Slideset 2: 17 Bits and Bytes

Word-Oriented Memory Organization

Addresses Specify Byte
Locations

Which is the address of the
first byte in word.

Addresses of successive
words differ by 4 (32-bit) or
8 (64-bit).

Addresses of multi-byte data
items are typically aligned
according to the size of the
data.

32-bit 64-bit bytes addr.
words words

0000

Addr: 0001

0000 0002

Addr: 0003

0000 0004

Addr: 0005

0004 0006

0007

0008

Addr: 0009

0008 0010

Addr: 0011

0008 0012

Addr: 0013

0012 0014

0015

CS429 Slideset 2: 18 Bits and Bytes

Data Representations

Sizes of C Objects (in Bytes)

C Data Type Alpha Intel x86 AMD 64

int 4 4 4

long int 8 8 8

char 1 1 1

short 2 2 2

float 4 4 4

double 8 8 8

long double 8 8 10/12

char * 8 8 8

other pointer 8 8 8

The integer data types (int, long int, short, char) can all be
either signed or unsigned.

CS429 Slideset 2: 19 Bits and Bytes

Byte Ordering

How should bytes within a multi-byte data item be ordered
in memory?

Given 64-bit hex value 0x0001020304050607, it is common to store
this in memory in one of two formats: big endian or little endian.

Note that “endian-ness” only applies to multi-byte primitive data
items, not to strings, arrays, or structs.

CS429 Slideset 2: 20 Bits and Bytes

Byte Ordering Examples

Big Endian: Most significant byte has lowest (first) address.

Little Endian: Least significant byte has lowest address.

Example:

Int variable x has 4-byte representation 0x01234567.

Address given by &x is 0x100

Big Endian:

Address: 0x100 0x101 0x102 0x103

Value: 01 23 45 67

Little Endian:

Address: 0x100 0x101 0x102 0x103

Value: 67 45 23 01

CS429 Slideset 2: 21 Bits and Bytes

Byte Ordering

Conventions

Sun, PowerPC MacIntosh computers are “big endian”
machines: most significant byte has lowest (first) address.

Alpha, Intel MacIntosh, x86s are “little endian” machines:
least significant byte has lowest address.

ARM processor offers support for big endian, but mainly they
are used in their default, little endian configuration.

There are many (hundreds) of microcontrollers, so check
before you start programming!

CS429 Slideset 2: 22 Bits and Bytes

Reading Little Endian Listings

Disassembly

Yields textual representation of binary machine code.

Generated by program that reads the machine code.

Example Fragment (IA32):

Address I n s t r u c t i o n Code Assembly R e n d i t i o n
8048365: 5b pop %ebx
8048366: 81 c3 ab 12 00 00 add $0x12ab ,%ebx
804836 c : 83 bb 28 00 00 00 cmpl $0x0 , 0 x28(%ebx)

Deciphering Numbers: Consider the value 0x12ab in the second
line of code:

Pad to 4 bytes: 0x000012ab

Split into bytes: 00 00 12 ab

Make little endian: ab 12 00 00

CS429 Slideset 2: 23 Bits and Bytes

Examining Data Representations

Code to Print Byte Representations of Data
Casting a pointer to unsigned char * creates a byte array.

t y p e d e f uns i gned char ∗ p o i n t e r ;

v o i d show byte s (p o i n t e r s t a r t , i n t l e n)
{

i n t i ;
f o r (i = 0 ; i < l e n ; i ++)

p r i n t f (”%p\ t0x %.2x\n” , s t a r t+i , s t a r t [i]) ;
p r i n t f (”\n”) ;

}

Printf directives:

%p: print pointer

%x: print hexadecimal

CS429 Slideset 2: 24 Bits and Bytes

show bytes Execution Example

i n t a = 15213;
p r i n t f (” i n t a = 15213;\ n”) ;
show byte s ((p o i n t e r) &a , s i z e o f (i n t)) ;

Result (Linux):

int a = 15213;

0x7fff90c56c7c 0x6d

0x7fff90c56c7d 0x3b

0x7fff90c56c7e 0x00

0x7fff90c56c7f 0x00

CS429 Slideset 2: 25 Bits and Bytes

Representing Integers

i n t A = 15213;
i n t B = −15213;
l ong i n t C = 15213;

1521310 = 00111011011011012 = 3B6D16

Linux (little endian) Alpha (little endian) Sun (big endian)

A 6D 3B 00 00 6D 3B 00 00 00 00 3B 6D

B 93 C4 FF FF 93 C4 FF FF FF FF C4 93

C 6D 3B 00 00 00 00 00 00 6D 3B 00 00 00 00 00 00 00 00 00 00 00 00 3B 6D

We’ll cover the representation of negatives later.

CS429 Slideset 2: 26 Bits and Bytes

Representing Pointers

i n t B = −15213;
i n t ∗P = &B;

Linux Address:
Hex: BFFFF8D4AFBB4CD0
In memory: D0 4C BB AF D4 F8 FF BF

Sun Address:
Hex: EFFFFFB2CAA2C15C0
In Memory: EF FF FB 2C AA 2C 15 C0

Pointer values generally are not predictable. Different compilers
and machines assign different locations.

CS429 Slideset 2: 27 Bits and Bytes

Representing Floats

All modern machines implement the IEEE Floating Point standard.
This means that it is consistent across all machines.

f l o a t F = 1 5 2 1 3 . 0 ;

Binary: 01000110011011011011010000000000
Hex: 466DB400
In Memory (Linux/Alpha): 00 B4 6D 46
In Memory (Sun): 46 6D B4 00

Note that it’s not the same as the int representation, but you can
see that the int is in there, if you know where to look.

CS429 Slideset 2: 28 Bits and Bytes

Representing Strings

Strings are represented by a sequence of characters.
Each character is encoded in ASCII format.

Standard 7-bit encoding of character set.
Other encodings exist, but are less common.

Strings should be null-terminated. That is, the final character
has ASCII code 0. I.e., a string of k chars requires k + 1 bytes.

Compatibility

Byte ordering (endian-ness) is not an issue since the data are
single byte quantities.

Text files are generally platform independent, except for
different conventions of line break character(s).

CS429 Slideset 2: 29 Bits and Bytes

Machine Level Code Representation

Encode Program as Sequence of Instructions

Each simple operation

Arithmetic operation
Read or write memory
Conditional branch

Instructions are encoded as sequences of bytes.

Alpha, Sun, PowerPC Mac use 4 byte instructions (Reduced
Instruction Set Computer” (RISC)).
PC’s and Intel Mac’s use variable length instructions (Complex
Instruction Set Computer (CISC)).

Different instruction types and encodings for different
machines.

Most code is not binary compatible.

Remember: Programs are byte sequences too!

CS429 Slideset 2: 30 Bits and Bytes

Representing Instructions

i n t sum(i n t x , i n t y) {
r e t u r n x + y ;

}

For this example, Alpha and Sun use two 4-byte instructions. They
use differing numbers of instructions in other cases.

PC uses 7 instructions with lengths 1, 2, and 3 bytes. Windows
and Linux are not fully compatible.

Different machines typically use different instuctions and
encodings.

Instruction sequence for sum program:

Alpha: 00 00 30 42 01 80 FA 68
Sun: 81 C3 E0 08 90 02 00 09
PC: 55 89 E5 8B 45 OC 03 45 08 89 EC 5D C3

CS429 Slideset 2: 31 Bits and Bytes

Assembly vs. Machine Code

Machine code bytes Assembly language statements
foo:

B8 22 11 00 FF movl $0xFF001122, %eax

01 CA addl %ecx, %edx

31 F6 xorl %esi, %esi

53 pushl %ebx

8B 5C 24 04 movl 4(%esp), %ebx

8D 34 48 leal (%eax, %ecx, 2), %esi

39 C3 cmpl %eax, %ebx

72 EB jnae foo

C3 retl

Instruction stream
B8 22 11 00 FF 01 CA 31 F6 53 8B 5C 24
04 8D 34 48 39 C3 72 EB C3

CS429 Slideset 2: 32 Bits and Bytes

And So On

Recall Great Reality 7: Whatever you
plan to store on a computer ultimately
has to be represented as a finite
collection of bits.

That’s true whether it’s integers, reals,
characters, strings, data structures,
instructions, programs, pictures, videos,
audio files, etc. Anything!

CS429 Slideset 2: 33 Bits and Bytes

Boolean Algebra

Developed by George Boole in
the 19th century, Boolean algebra
is the algebraic representation of
logic. We encode “True” as 1
and “False” as 0.

CS429 Slideset 2: 34 Bits and Bytes

Boolean Algebra

And: A & B = 1 when both A =
1 and B = 1.

A B &

0 0 0

0 1 0

1 0 0

1 1 1

Or: A | B = 1 when either A =
1 or B = 1.

A B |

0 0 0

0 1 1

1 0 1

1 1 1

Not: ˜A = 1 when A = 0.
A ˜

0 1

1 0

Xor: A ˆ B = 1 when either A
= 1 or B = 1, but not both.

A B ˆ

0 0 0

0 1 1

1 0 1

1 1 0

CS429 Slideset 2: 35 Bits and Bytes

Application of Boolean Algebra

In a 1937 MIT Master’s
Thesis, Claude Shannon
showed that Boolean algebra
would be a great way to model
digital networks.

At that time, the networks were relay switches. But today, all
combinational circuits can be described in terms of Boolean
“gates.”

CS429 Slideset 2: 36 Bits and Bytes

Boolean Algebra

〈{0, 1}, |, &, ∼, 0, 1〉 forms a Boolean algebra.

Or is the sum operation.

And is the product operation.

∼ is the “complement” operation (not additive inverse).

0 is the identity for sum.

1 is the identity for product.

CS429 Slideset 2: 37 Bits and Bytes

Boolean Algebra Properties

Some boolean algebra properties are similar to integer arithmetic,
some are not.

Commutativity:

A|B = B|A A + B = B + A
A & B = B & A A ∗ B = B ∗ A

Associativity:

(A|B)|C = A|(B|C) (A + B) + C = A + (B + C)
(A & B) & C = A & (B & C) (A ∗ B) ∗ C = A ∗ (B ∗ C)

Product Distributes over Sum:

A & (B|C) = A ∗ (B + C) = (A ∗ B) + (A ∗ C)
(A & B)|(A & C)

Sum and Product Identities:

A|0 = A A + 0 = A
A & 1 = A A ∗ 1 = A

CS429 Slideset 2: 38 Bits and Bytes

Boolean Algebra Properties

Zero is product annihilator:

A & 0 = 0 A ∗ 0 = 0
Cancellation of negation:

∼ (∼ A)) = A −(−A)) = A

The following boolean algebra rules don’t have analogs in integer
arithmetic.

Boolean: Sum distributes over product
A|(B & C) = (A|B) & (A|C) A + (B ∗ C) 6= (A + B) ∗ (A + C)

Boolean: Idempotency
A|A = A A + A 6= A
A & A = A A ∗ A 6= A

CS429 Slideset 2: 39 Bits and Bytes

Boolean Algebra Properties

Boolean: Absorption
A|(A & B) = A A + (A ∗ B) 6= A
A & (A|B) = A A ∗ (A + B) 6= A

Boolean: Laws of Complements
A| ∼ A = 1 A + −A 6= 1

Ring: Every element has additive inverse
A| ∼ A 6= 0 A + −A = 0

CS429 Slideset 2: 40 Bits and Bytes

Properties of & and ˆ

Commutative sum: AˆB = BˆA

Commutative product: A & B = B & A

Associative sum: (AˆB)ˆC = Aˆ(BˆC)

Associative product: (A & B) & C = A & (B & C)

Prod. over sum: A & (BˆC) = (A & B)ˆ(A & C)

0 is sum identity: Aˆ0 = A

1 is prod. identity: A & 1 = A

0 is product annihilator: A & 0 = 0

Additive inverse: AˆA = 0

CS429 Slideset 2: 41 Bits and Bytes

Relations Between Operations

DeMorgan’s Laws
Express & in terms of |, and vice-versa:

A & B =∼ (∼ A| ∼ B)

A|B =∼ (∼ A & ∼ B)

Exclusive-Or using Inclusive Or:

AˆB = (∼ A & B)|(A & ∼ B)

AˆB = (A|B) & ∼ (A & B)

CS429 Slideset 2: 42 Bits and Bytes

Generalized Boolean Algebra

We can also operate on bit vectors (bitwise). All of the properties
of Boolean algebra apply:

01101001 01101001 01101001

& 01010101 | 01010101 ˆ 01010101 ˜ 01010101

__________ __________ __________ __________

01000001 01111101 00111100 10101010

CS429 Slideset 2: 43 Bits and Bytes

Bit Level Operations in C

The operations &, |, ∼, ˆ are all available in C.

Apply to any integral data type: long, int, short, char.

View the arguments as bit vectors.

Operations are applied bit-wise to the argument(s).

Examples: (char data type)

∼ 0x41 → 0xBE
∼ 010000012 → 101111102

∼ 0x00 → 0xFF
∼ 000000002 → 111111112

0x69 & 0x55 → 0x41
011010012 & 010101012 → 010000012

0x69|0x55 → 0x7D
011010012|010101012 → 011111012

011010012ˆ010101012 → 001111002

CS429 Slideset 2: 44 Bits and Bytes

Logical Operators in C

There is another set of operators in C, called the logical operators,
(&&, ||, !). These treat inputs as booleans, not as strings of
booleans.

View 0 as “False.”
View anything nonzero as “True.”
Always return 0 or 1.
Always do short-circuit evaluation (early termination)
There isn’t a “logical” xor, but != works if you know the
inputs are boolean.

Examples:

!0x41 → 0x00

!0x00 → 0x01

!!0x41 → 0x01

!!0x69 && 0x55 → 0x01

!!0x69 || 0x55 → 0x01

CS429 Slideset 2: 45 Bits and Bytes

A Puzzle

Given 8 light switches on each of floors A and B, how could you
store the following information efficienty?

1 Which lights are on on floor A?

2 Which lights are on on floor B?

3 Which corresponding lights are on both floors?

4 Which lights are on on either floor?

5 Which lights are on on floor A but not floor B?

CS429 Slideset 2: 46 Bits and Bytes

Representing Sets with Masks

Representation
A bit vector a may represent a subset S of some “reference set”
(actually list) L: aj = 1 iff L[j] ∈ S

Bit vector A:
01101001 represents {B, C , E , H}
ABCDEFGH

Bit vector B:
01010101 represents {B, D, F , H}
ABCDEFGH

What bit operations on these set representations correspond to:
intersection, union, complement?

CS429 Slideset 2: 47 Bits and Bytes

Representing Sets

Bit vector A: 01101001 = {B, C, E, H}
Bit vector B: 01010101 = {B, D, F, H}

Operations:
Given the two sets above, perform these bitwise ops to obtain:

Set operation Bool op Result Set

Intersection A & B 01000001 {B, H}
Union A | B 01111101 {B, C , D, E , F , H}
Symmetric difference A ˆ B 00111100 {C , D, E , F}
Complement ˜A 10010110 {A, D, F , G}

How would you know if lights D and E were on? How about if only
lights D and E? How about without using ==?

CS429 Slideset 2: 48 Bits and Bytes

Shift Operations

Left Shift: x << y

Shift bit vector x left by y positions

Throw away extra bits on the left.

Fill with 0’s on the right.

Right Shift: x >> y

Shift bit vector x right by y positions.

Throw away extra bits on the right.

Logical shift: Fill with 0’s on the left.

Arithmetic shift: Replicate with most significant bit on the
left.

Unlike Java, C uses the same operator for logical and arithmetic
right shift; the compiler “guesses” which one you meant according
to the type of the operand (logical for unsigned and arithmetic for
signed).

CS429 Slideset 2: 49 Bits and Bytes

Shift Examples

Argument x 01100010

x << 3 00010000

x >> 2 (logical) 00011000

x >> 2 (arithmetic) 00011000

Argument x 10100010

x << 3 00010000

x >> 2 (logical) 00101000

x >> 2 (arithmetic) 11101000

For right shift, the compiler will choose arithmetic shift if the
argument is signed, and logical shift if unsigned.

CS429 Slideset 2: 50 Bits and Bytes

Cool Stuff with XOR

Bitwise XOR is a form of addition, with the extra property that
each value is its own additive inverse: A ˆ A = 0.

v o i d funny swap (i n t ∗x , i n t ∗y)
{

∗x = ∗x ˆ ∗y ; /∗ #1 ∗/
∗y = ∗x ˆ ∗y ; /∗ #2 ∗/
∗x = ∗x ˆ ∗y ; /∗ #3 ∗/

}

*x *y

Begin A B

1 A ˆ B B

2 A ˆ B (A ˆ B) ˆ B = A

3 (A ˆ B) ˆ A = B A

End B A

Is there ever a case where this code fails?

CS429 Slideset 2: 51 Bits and Bytes

Main Points

It’s all about bits and bytes.

Numbers

Programs

Text

Different machines follow different conventions.

Word size

Byte ordering

Representations

Boolean algebra is the mathematical basis.

Basic form encodes “False” as 0 and “True” as 1.

General form is like bit-level operations in C; good for
representing and manipulating sets.

CS429 Slideset 2: 52 Bits and Bytes

