CS429: Computer Organization and Architecture Bits and Bytes

> Dr. Bill Young Department of Computer Science University of Texas at Austin

Last updated: February 3, 2020 at 14:57

There are 10 kinds of people in the world: those who understand binary, and those who don't!

- Why bits?
- Representing information as bits
 - Binary and hexadecimal
 - Byte representations : numbers, characters, strings, instructions, etc.

CS429 Slideset 2: 2

- Bit level manipulations
 - Boolean algebra
 - C constructs

CS429 Slideset 2: 1 Bits

It's Bits All the Way Down

Why Binary? Why Not Decimal?

Great Reality 7: Whatever you plan to store on a computer ultimately has to be represented as a finite collection of bits.

That's true whether it's integers, reals, characters, strings, data structures, instructions, programs, pictures, videos, etc.

That really means that only *discrete* quantities can be represented exactly. Non-discrete (continuous) quantities have to be approximated.

Base 10 Number Representation.

- Fingers *are* called as "digits" for a reason.
- Natural representation for financial transactions.
 Floating point number cannot exactly represent \$1.20.

• Even carries through in scientific notation: 1.5213×10^4 If we lived in Homer Simpson's world, we'd all use octal!

				C.S.D.		Cel IN	6	2	8	10
- appropriate	 11	- F 12	5. p. p.	-	1 K . F	1 F 5	en per per	44	- 1 - L-	arpinet

Implementing Electronically

- 10 different values are hard to store. ENIAC (First electronic computer) used 10 vacuum tubes / digits
- They're hard to transmit. Need high precision to encode 10 signal levels on single wire.
- Messy to implement digital logic functions: addition, multiplication, etc.

CS429 Slideset 2: 5

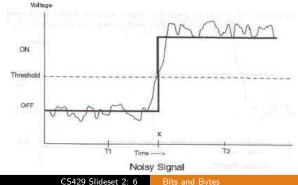
Even Bits are an Abstraction!

Base 2 Number Representation

- Represent 15213₁₀ as 11101101101101₂
- Represent 1.20₁₀ as 1.001100110011[0011]₂
- $\bullet~\mbox{Represent}~1.5213\times10^4~\mbox{as}~1.1101101101101_2\times2^{13}$

Electronic Implementation

- Easy to store bits with bistable elements.
- Reliably transmitted on noisy and inaccurate wires.



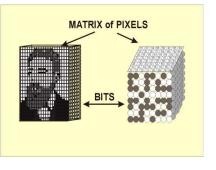
CS429 Slideset 2: 6 Bits and

Some Representations

To store data of type X, someone had to invent a mapping from items of type X to bit strings. That's the *representation mapping*.

Representing Data

In a sense the representation is arbitrary. The representation is just a mapping from the domain onto a finite set of bit strings.



The mapping should be one-one, but not necessarily onto. But some representations are better than others. Why would that be? Hint: what operations do you want to support? Suppose you want to represent the finite set of natural numbers $[0 \dots 7]$ as 3-bit strings. Would 2-bit strings work?

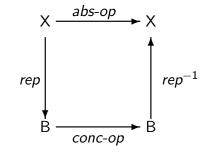
Dec.	Rep1	Rep2
0	101	000
1	011	001
2	111	010
3	000	011
4	110	100
5	010	101
6	001	110
7	100	111

Why is one of these representations is "better" than the other? Hint: How would you do addition using Rep1?

Representing Data

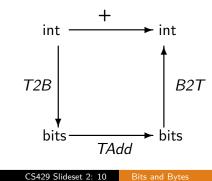
Representing Data: Integer Addition

A "good" mapping will map X data onto bit strings (B) in a way that makes it easy to compute common operations on that data. I.e., the following diagram should *commute*, for a reasonable choice of *conc-op*.



int x;		
inty;		
t = x + y;		

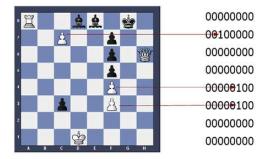
To carry out any operation at the C level means converting the data into bit strings, and implementing an operation on the bit strings that has the "intended effect" under the mapping.



CS429 Slideset 2: 9

Representing Data

Important Fact 1: If you are going to represent any type in k bits, you can only represent 2^k different values.

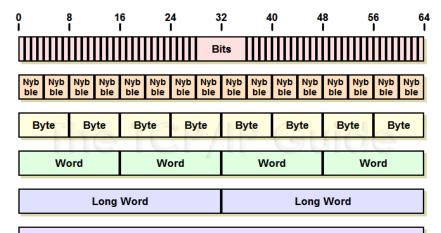


Important Fact 2: The same bit string can represent an integer (signed or unsigned), float, character string, list of instructions, address, etc. depending on the context. How do you represent the context in C?

CS429 Slideset 2: 11 Bits and Bytes

Bits Aren't So Convenient

Since it's tedious always to think in terms of bits, we group them together into larger units. *Sizes of these units depends on the architecture / language.*



Very Long Word

Memory as Array

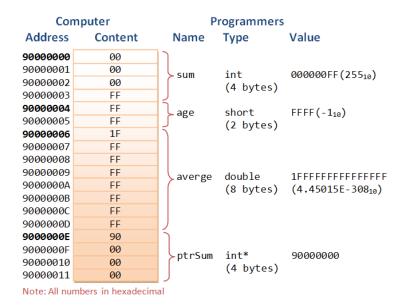
Byte = 8 bits

Which can be represented in various forms:

- \bullet Binary: 000000002 to 111111112
- Decimal: 0₁₀ to 255₁₀
- Hexadecimal: 00_{16} to FF_{16}
 - Base 16 number representation
 - Use characters '0'to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as 0xFA1D37B or 0xfa1d37b

BTW: one hexadecimal digit represents 4 bits (one nybble).

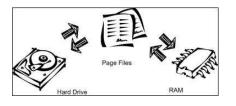
— • • •	-	
Hex	Dec	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111



Note: this picture is appropriate for a 32-bit, big endian machine. How did I know that?

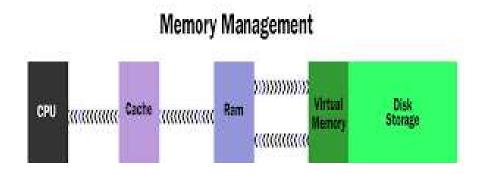
CS429 Slideset 2: 13 Bits and Bytes CS429 Slideset 2: 14 Bits and Bytes

Byte-Oriented Memory Organization



- Conceptually, memory is a very large array of bytes.
- Actually, it's implemented with hierarchy of different memory types.
 - SRAM, DRAM, disk.
 - The OS only allocates storage for regions actually used by program.
- In Unix and Windows, address space private to particular "process."
 - Encapsulates the program being executed.
 - Program can clobber its own data, but not that of others.

Byte-Oriented Memory Organization



Compiler and Run-Time System Control Allocation

- Where different program objects should be stored.
- Multiple storage mechanisms: static, stack, and heap.
- In any case, all allocation within single virtual address space.

Machine Words

Machines generally have a specific "word size."

- It's the nominal size of addresses on the machine.
- Most current machines run 64-bit software (8 bytes).
 - 32-bit software limits addresses to 4GB.
 - Becoming too small for memory-intensive applications.
- All x86 current hardware systems are 64 bits (8 bytes).
 Potentially address around 1.8X10¹⁹ bytes.
- Machines support multiple data formats.
 - Fractions or multiples of word size.
 - Always integral number of bytes.
- X86-hardware systems operate in 16, 32, and 64-bit modes.
 - Initially starts in 286 mode, which is 16-bit.
 - Under programmer control, 32- and 64-bit modes are enabled.

Addresses Specify Byte Locations

- Which is the address of the *first* byte in word.
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit).
- Addresses of multi-byte data items are typically *aligned* according to the size of the data.

32-bit	64-bit	bytes	addr.
words	words		
			0000
Addr:			0001
0000			0002
	Addr:		0003
	0000		0004
Addr:			0005
0004			0006
			0007
			8000
Addr:			0009
8000			0010
	Addr:		0011
	0008		0012
Addr:			0013
0012			0014
			0015

CS429 Slideset 2: 17 B

Data Representations

Sizes of C Objects (in Bytes)

C Data Type	Alpha	Intel x86	AMD 64
int	4	4	4
long int	8	8	8
char	1	1	1
short	2	2	2
float	4	4	4
double	8	8	8
long double	8	8	10/12
char *	8	8	8
other pointer	8	8	8

The *integer data types* (int, long int, short, char) can all be either signed or unsigned.

CS429 Slideset 2: 18 Bits and

Byte Ordering

How should bytes within a multi-byte data item be ordered in memory?

Given 64-bit hex value $0 \times 0001020304050607$, it is common to store this in memory in one of two formats: big endian or little endian.

BIG-	ENDL	AN		Me	mory				
	00	01	02	03	04	05	06	07	
	a	a+1	a+2	a+3	a+4	a+5	a+6	a+7	
LITTL	E-EN	DIAN		Mer	mory				_
	07	06	05	04	03	02	01	00	
	a	a+1	a+2	a+3	a+4	a+5	a+6	a+7	

Note that "endian-ness" only applies to multi-byte *primitive* data items, not to strings, arrays, or structs.

Byte Ordering Examples

Byte Ordering

Big Endian: Most significant byte has lowest (first) address.

Little Endian: Least significant byte has lowest address.

Example:

- Int variable x has 4-byte representation **0x01234567**.
- Address given by &x is 0x100

Big Endian:

Address:	0×100	0x101	0x102	0x103	
Value:	01	23	45	67	

Little Endian:

Address:	0×100	0x101	0×102	0×103	
Value:	67	45	23	01	

CS429 Slideset 2: 21 Bits and

Reading Little Endian Listings

Disassembly

- Yields textual representation of binary machine code.
- Generated by program that reads the machine code.

Example Fragment (IA32):

Address	Instruction Code	Assembly Rendition
8048365:	5 b	pop %eb×
8048366:	81 c3 ab 12 00 00	add \$0×12ab,%eb×
804836c:	83 bb 28 00 00 00	cmpl \$0×0,0×28(%ebx)

Deciphering Numbers: Consider the value 0x12ab in the second line of code:

- Pad to 4 bytes: 0x000012ab
- Split into bytes: 00 00 12 ab
- Make little endian: ab 12 00 00

Conventions

- Sun, PowerPC MacIntosh computers are "big endian" machines: most significant byte has lowest (first) address.
- Alpha, Intel MacIntosh, x86s are "little endian" machines: least significant byte has lowest address.
- ARM processor offers support for big endian, but mainly they are used in their default, little endian configuration.
- There are many (hundreds) of microcontrollers, so check before you start programming!

CS429 Slideset 2: 22 Bits and Bytes

Examining Data Representations

Code to Print Byte Representations of Data

Casting a pointer to unsigned char * creates a byte array.

```
typedef unsigned char *pointer;
void show_bytes(pointer start, int len)
{
    int i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n",start+i, start[i]);
    printf("\n");
}</pre>
```

Printf directives:

- %p: print pointer
- %x: print hexadecimal

Representing Integers

int a = 15213; printf("int a = 15213;\n"); show_bytes((pointer) &a, sizeof(int));

Pointer values generally are not predictable. Different compilers

and machines assign different locations.

Result (Linux):

int a = 15213; 0x7fff90c56c7c 0x6d 0x7fff90c56c7d 0x3b 0x7fff90c56c7e 0x00 0x7fff90c56c7f 0x00 int A = 15213; int B = -15213; long int C = 15213;

 $15213_{10} = 0011101101101_2 = 3B6D_{16}$

	Linux (little endian)	Alpha (little endian)	Sun (big endian)
Α	6D 3B 00 00	6D 3B 00 00	00 00 3B 6D
В	93 C4 FF FF	93 C4 FF FF	FF FF C4 93
С	6D 3B 00 00 00 00 00 00	6D 3B 00 00 00 00 00 00	00 00 00 00 00 00 3B 6D

We'll cover the representation of negatives later.

CS429 Slideset 2: 25 Bits and Bytes	CS429 Slideset 2: 26 Bits and Bytes
Representing Pointers	Representing Floats
	All modern machines implement the IEEE Floating Point standard. This means that it is consistent across all machines.
int $B = -15213;$ int $*P = \&B$	IEEE 754 Floating Point Standard
Linux Address: Hex: BFFFF8D4AFBB4CD0 In memory: D0 4C BB AF D4 F8 FF BF	s e=exponent m=mantissa 1 bit 8 bits 23 bits number = $(-1)^{s} * (1.m) * 2^{e-127}$
Sun Address: Hex: EFFFFB2CAA2C15C0 In Memory: EF FF FB 2C AA 2C 15 C0	float F = 15213.0; Binary: 0100011001101101101000000000

Binary: 0100011001101101101101000000000 Hex: 466DB400 In Memory (Linux/Alpha): 00 B4 6D 46 In Memory (Sun): 46 6D B4 00

Note that it's not the same as the int representation, but you can see that the int is in there, if you know where to look.

CS429 Slideset 2: 27	Bits and Bytes	CS429 Slideset 2: 28	Bits and Bytes

- Strings are represented by a sequence of characters.
- Each character is encoded in ASCII format.
 - Standard 7-bit encoding of character set.
 - Other encodings exist, but are less common.
- Strings should be null-terminated. That is, the final character has ASCII code 0. I.e., a string of k chars requires k + 1 bytes.

Compatibility

- Byte ordering (endian-ness) is not an issue since the data are single byte quantities.
- Text files are generally platform independent, except for different conventions of line break character(s).

CS429 Slideset 2: 29

Encode Program as Sequence of Instructions

- Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch
- Instructions are encoded as sequences of bytes.
 - Alpha, Sun, PowerPC Mac use 4 byte instructions (Reduced Instruction Set Computer'' (RISC)).
 - PC's and Intel Mac's use variable length instructions (Complex Instruction Set Computer (CISC)).
- Different instruction types and encodings for different machines.
- Most code is not binary compatible.

Remember: Programs are byte sequences too!

CS429 Slideset 2: 30 Bits and Bytes

Assembly vs. Machine Code

Machine code bytes	Assembly language statements foo:
B8 22 11 00 FF	movl \$0xFF001122, %eax
01 CA	addl %ecx, %edx
31 F6	xorl %esi, %esi
53	pushl %ebx
8B 5C 24 04	movl 4(%esp), %ebx
8D 34 48	leal (%eax, %ecx, 2), %esi
39 C3	cmpl %eax, %ebx
72 EB	jnae foo
C3	retl

Instruction stream

B8 22 11 00 FF 01 CA 31 F6 53 8B 5C 24 04 8D 34 48 39 C3 72 EB C3

Representing Instructions

```
int sum( int x, int y ) {
    return x + y;
}
```

For this example, Alpha and Sun use two 4-byte instructions. They use differing numbers of instructions in other cases.

PC uses 7 instructions with lengths 1, 2, and 3 bytes. Windows and Linux are not fully compatible.

Different machines typically use different instuctions and encodings.

Instruction sequence for sum program:

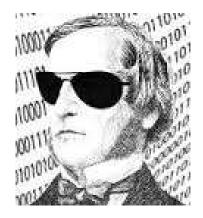
Alpha: 00 00 30 42 01 80 FA 68 Sun: 81 C3 E0 08 90 02 00 09 PC: 55 89 E5 8B 45 OC 03 45 08 89 EC 5D C3

Boolean Algebra

Recall **Great Reality 7:** Whatever you plan to store on a computer ultimately has to be represented as a finite collection of bits.

That's true whether it's integers, reals, characters, strings, data structures, instructions, programs, pictures, videos, audio files, etc. Anything!

Developed by George Boole in the 19th century, Boolean algebra is the algebraic representation of logic. We encode "True" as 1 and "False" as 0.



Bytes	CS429 Slideset 2: 34	Bits and Bytes
Application of P	aalaan Algah	
		Bytes CS429 Slideset 2: 34 Application of Boolean Algeb

		& $B = 1$ when both $A =$	
1 ar	nd B	B = 1.	Not:
А	В	&	
0	0	0	
		0	
1 1	0	0	
1	1	1	
		'	Xor: A
Or:	A	\mid B $=$ 1 when either A $=$	= 1 or
1 or	B =	= 1.	
А	В		
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Not:	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	when $A = 0$.	
	А		
	0 1	1	
	1	0	

Xor: A $\hat{B} = 1$ when either A = 1 or B = 1, but not both. $\begin{array}{c|c} A & B & 1 \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$ In a 1937 MIT Master's Thesis, Claude Shannon showed that Boolean algebra would be a great way to model digital networks.

At that time, the networks were relay switches. But today, all combinational circuits can be described in terms of Boolean "gates."

Boolean Algebra Properties

Some boolean algebra properties are similar to integer arithmetic, some are not.

Commutativity:

A B = B A	A + B = B + A
A & B = B & A	A * B = B * A
Associativity:	
(A B) C = A (B C)	(A+B)+C=A+(B+C)
(A & B) & C = A & (B & C)	(A * B) * C = A * (B * C)
Product Distributes over Sum:	
A & (B C) =	$A \ast (B + C) = (A \ast B) + (A \ast C)$
(A & B) (A & C)	
Sum and Product Identities:	
A 0=A	A + 0 = A
A & 1 = A	A * 1 = A

CS429 Slideset 2: 37	Bits and Bytes	CS429 Slideset 2: 38	Bits and Bytes
Boolean Algebra Properties		Boolean Algebra Properties	

Zero

• Or is the sum operation.

• 0 is the identity for sum. • 1 is the identity for product.

• And is the product operation.

A & 0 = 0	A * 0 = 0
Cancellation of negation:	
$\sim (\sim A)) = A$	-(-A)) = A

• $\langle \{0,1\}, |, \&, \sim, 0, 1 \rangle$ forms a *Boolean algebra*.

• \sim is the "complement" operation (not additive inverse).

The following boolean algebra rules don't have analogs in integer arithmetic.

Boolean: Sum distributes over product

$$A|(B \& C) = (A|B) \& (A|C) \quad A + (B * C) \neq (A + B) * (A + C)$$

Boolean: Idempotency

A A = A	A + A eq A
<i>A</i> & <i>A</i> = <i>A</i>	A * A eq A

Boolean: Absorption	
$A (A \And B) = A$	$A + (A * B) \neq A$
$A \And (A B) = A$	A*(A+B) eq A
Boolean: Laws of Complements	
$ A \sim A = 1$	A+-A eq 1

Ring: Every element has	additive inverse
$ A \sim A eq 0$	A + -A = 0

o is pr	oduct	annihilator:	
1 8.0	_ 0		/

Commutative sum:	$A^{A}B = B^{A}A$
Commutative product:	A & B = B & A
Associative sum:	$(A^{A}B)^{A}C = A^{A}(B^{A}C)$
Associative product:	(A & B) & C = A & (B & C)
Prod. over sum:	$A \& (B^{C}) = (A \& B)^{(A \& C)}$
0 is sum identity:	$A^0 = A$
1 is prod. identity:	A & 1 = A
0 is product annihilator:	A & 0 = 0
Additive inverse:	$A^{A} = 0$

DeMorgan's Laws Express & in terms of |, and vice-versa:

 $A \& B = \sim (\sim A | \sim B)$ $A | B = \sim (\sim A \& \sim B)$

Exclusive-Or using Inclusive Or:

$$A^{A}B = (\sim A \& B)|(A \& \sim B)$$

 $A^{B} = (A|B) \& \sim (A \& B)$

	CS429 Slideset 2: 41	Bits and Bytes		CS429 Slideset 2: 42 B	its and Bytes
Generalized Bo	olean Algebr	а		Bit Level Operations in C	
We can also op of Boolean alge 01101001 & 01010101 01000001		ors (bitwise). All 01101001 ^ 01010101 00111100	of the properties ~ 01010101 	The operations &, $, \sim, $ are all avail • Apply to any <i>integral</i> data type • View the arguments as bit vector • Operations are applied bit-wise Examples: (char data type) $\sim 0x41$ $\sim 01000001_2$ $\sim 0x00$ $\sim 0000000_2$ 0x69 & 0x55 $01101001_2 \& 01010101_2$ 0x69 0x55 $01101001_2(01010101_2)$ $01101001_2(01010101_2)$: long, int, short, char. ors.

Logical Operators in C

A Puzzle

There is another set of operators in C, called the *logical operators*, (&&, ||, !). These treat inputs as booleans, not as strings of booleans.

- View 0 as "False."
- View anything nonzero as "True."
- Always return 0 or 1.
- Always do short-circuit evaluation (early termination)
- There isn't a "logical" xor, but != works if you know the inputs are boolean.

Examples:

!0x41			ightarrow 0x00
!0x00			ightarrow 0x01
!!0x41			ightarrow 0x01
!!0x69	&&	0x55	ightarrow 0x01
!!0x69		0x55	ightarrow 0x01

CS429 Slideset 2: 45

Given 8 light switches on each of floors A and B, how could you store the following information efficienty?

- Which lights are on on floor A?
- Which lights are on on floor B?
- Which corresponding lights are on both floors?
- Which lights are on on either floor?
- Which lights are on on floor A but not floor B?

CS429 Slideset 2: 46 Bits and Byt

Representing Sets

Bit vector A: 01101001 = {B, C, E, H} Bit vector B: 01010101 = {B, D, F, H}

Operations:

Given the two sets above, perform these bitwise ops to obtain:

Set operation	Bool op	Result	Set
Intersection	A & B	01000001	$\{B,H\}$
Union	A B	01111101	$\{B, C, D, E, F, H\}$
Symmetric difference	A ^ B	00111100	$\{C, D, E, F\}$
Complement	~A	10010110	$\{A, D, F, G\}$

How would you know if lights D and E were on? How about if *only* lights D and E? How about without using ==?

Representation

Representing Sets with Masks

A bit vector a may represent a subset S of some "reference set" (actually list) L: $a_j = 1$ iff $L[j] \in S$

Bit vector A:

01101001	represents $\{B, C, E, H\}$
ABCDEFGH	
ector B [.]	

Bit vector B:

01010101 ABCDEFGH represents $\{B, D, F, H\}$

What bit operations on these set representations correspond to: intersection, union, complement?

Shift Examples

Left Shift: x << y

Shift bit vector x left by y positions

- Throw away extra bits on the left.
- Fill with 0's on the right.

Right Shift: x >> y

Shift bit vector x right by y positions.

- Throw away extra bits on the right.
- Logical shift: Fill with 0's on the left.
- Arithmetic shift: Replicate with most significant bit on the left.

Unlike Java, C uses the same operator for logical and arithmetic right shift; the compiler "guesses" which one you meant according to the type of the operand (logical for unsigned and arithmetic for signed).

Argument x 01100010 x << 3</td> 00010000 x >> 2 (logical) 00011000 x >> 2 (arithmetic) 00011000

Argument x	10100010
0	
x << 3	00010000
x >> 2 (logical)	00101000
x >> 2 (arithmetic)	11101000

For right shift, the compiler will choose arithmetic shift if the argument is signed, and logical shift if unsigned.

CS429 Slideset 2: 50 Bits and Byte

Cool Stuff with XOR

Bitwise XOR is a form of addition, with the extra property that each value is its own additive inverse: $A \cap A = 0$.

```
void funny_swap(int *x, int *y)
{
    *x = *x ^ *y; /* #1 */
    *y = *x ^ *y; /* #2 */
    *x = *x ^ *y; /* #3 */
}
```

CS429 Slideset 2: 49

	*x	*у		
Begin	А	В		
1	A ^ B	В		
2	A ^ B	$(A \cap B) \cap B = A$		
3	$(A \cap B) \cap A = B$	А		
End	В	A		
1	1			

Is there ever a case where this code fails?

Main Points

It's all about bits and bytes.

- Numbers
- Programs
- Text

Different machines follow different conventions.

- Word size
- Byte ordering
- Representations

Boolean algebra is the mathematical basis.

- Basic form encodes "False" as 0 and "True" as 1.
- General form is like bit-level operations in C; good for representing and manipulating sets.

CS429 Slideset 2: 51	Bits	and	Bytes
----------------------	------	-----	-------