
CS429: Computer Organization and Architecture
Logic Design

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: February 17, 2020 at 13:55

CS429 Slideset 5: 1 Logic Design

Topics of this Slideset

To execute a program we need:

Communication: getting data from one place to another

Computation: perform arithmetic or logical operations

Memory: store the program, variables, results

Everything is expressed in terms of bits.

Communication: Low or high voltage on a wire

Computation: Compute boolean functions

Storage: Store bits
CS429 Slideset 5: 2 Logic Design

Digital Signals

Use voltage thesholds to extract discrete values from a
continuous signal.
Simplest version: 1-bit signal

Either high range (1) or low range (0)
With a guard range between them.

Not strongly affected by noise or low-quality elements; circuits
are simple, small and fast.

CS429 Slideset 5: 3 Logic Design

Truth Tables

And: A & B = 1 when both A =
1 and B = 1.

A B &

0 0 0

0 1 0

1 0 0

1 1 1

Or: A | B = 1 when either A =
1 or B = 1.

A B |
0 0 0

0 1 1

1 0 1

1 1 1

Not: ˜A = 1 when A = 0.

A ˜

0 1

1 0

Xor: A ˆ B = 1 when either A
= 1 or B = 1, but not both.

A B ˆ

0 0 0

0 1 1

1 0 1

1 1 0

CS429 Slideset 5: 4 Logic Design

Gates

What does it mean for a hardware device to represent a boolean
function (or truth table), say and?

CS429 Slideset 5: 5 Logic Design

Gates

What does it mean for a hardware device to represent a boolean
function (or truth table), say and?

1 Place on the two input lines voltages representing logical
values (T or F).

2 After a short delay, the output line will stabilize to a voltage
representing the logical and of the inputs.

CS429 Slideset 5: 6 Logic Design

Computing with Logic Gates

How are these logic functions actually computed in hardware?

Logic gates are constructed from transistors.
The output is a boolean function of inputs.
The gate responds continuously to changes in input with a

small delay.

How many of these do you really need?
CS429 Slideset 5: 7 Logic Design

Aside: Multiple-Input Gates

Some gates allow multiple inputs. For example, a 3-input AND is
essentially just a cascade of two 2-input ANDs.

For which gates does it make sense to have extra inputs? For
which doesn’t it make sense?

CS429 Slideset 5: 8 Logic Design

Aside: Inverted Inputs/Outputs

A small circle on either the input or output of a gate means that
that signal is inverted. That is, it’s as if there were an inverter
(not) gate there.

What would an implies gate look like?

CS429 Slideset 5: 9 Logic Design

A Complex Function

Primitive boolean functions are
implemented by logic gates; more
complex functions, by
combinations of gates.

Z = !A || (B && C);

A B C Z

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

CS429 Slideset 5: 10 Logic Design

Another Circuit

Which wires are connected and which are not? Can you see what
this circuit does?

CS429 Slideset 5: 11 Logic Design

Another Circuit

Which wires are connected and which are not? Can you see what
this circuit does?
This is called a majority circuit. What function does it compute?

CS429 Slideset 5: 12 Logic Design

Sets of Logic Gates

It’s pretty easy to see that any boolean function can be
implemented with AND, OR and NOT. Why? We call that a
functionally complete set of gates.

You can get by with fewer gates. How would you show each of the
following?

AND and NOT is complete.

OR and NOT is complete.

NAND is complete.

NOR is complete.

AND alone is not complete.

OR alone is not complete.

Often circuit designers will restrict themselves to a small subset of
gates (e.g., just NAND gates). Why would they do that?

CS429 Slideset 5: 13 Logic Design

Using Logic for Arithmetic

Suppose you wanted to do addition with logic. How might you go
about that?

CS429 Slideset 5: 14 Logic Design

Using Logic for Arithmetic

Suppose you wanted to do addition with logic. How might you go
about that?

Define a circuit (full adder) that does one step in an addition:

Full

Adder

carry−in
carry−out

S

A

B

A B Cin Cout S

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

CS429 Slideset 5: 15 Logic Design

Full Adder

The following circuit is a full
adder:

A half adder is a simpler circuit
with only inputs A and B.

A B Cin Cout S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

CS429 Slideset 5: 16 Logic Design

Adding a Pair of 4-bit Ints

How do you subtract? How do you multiply?

CS429 Slideset 5: 17 Logic Design

Combinational Circuits

The box contains an acyclic network of logic gates.

Continuously responds to changes in inputs.

Outputs become (after a short delay) boolean functions of the
inputs.

CS429 Slideset 5: 18 Logic Design

Bit Equality

The following circuit generates a 1 iff a and b are equal.

int eq = (a&&b) || (!a&&!b);

Can you design a simpler circuit to do this?

Hardware description languages (Verilog, VHDL)

Describe control, data movement, ...

“Compile” (synthesize) a hardware description into a circuit.

CS429 Slideset 5: 19 Logic Design

Verilog Example

One of the more widely used HDL’s is Verilog:

module s i m p c i r c u i t (A, B, C , x , y) ;
i n p u t A, B, C ;
output x , y ;
w i r e e ;
and g1 (e , A, B) ;
not g2 (y , C) ;
o r g3 (x , e , y) ;

endmodule

CS429 Slideset 5: 20 Logic Design

HCL

Hardware Control Language (HCL)

Very simple hardware description language.

Boolean operations have syntax similar to C logical operations.

We’ll use it to describe control logic for processors.

Data types

bool: Boolean (a, b, c, ...)

int: words (A, B, C, ...)

Does not specify word size

Statements

bool a = bool-expr;

int A = int-expr;

CS429 Slideset 5: 21 Logic Design

HCL Operations

Boolean expressions

Logic operations: a && b, a || b, !a

Word comparisons: A == B, A != B, A < B, A <= B,
A >= B, A > B

Set membership: A in {B, C, D}

Word expressions

Case expressions: [a: A; b: B; c: C]

Evaluate Boolean expressions a, b, c in sequence

Return corresponding word expression for first successful
Boolean evaluation.

CS429 Slideset 5: 22 Logic Design

Word Equality

Bit equal

Bit equal

Bit equal

Bit equal

eq31

eq30

eq1

eq0

b31

a31

a30

b30

b1

a0

a1

b0

... ... Eq

Word-level representation:

=
Eq

B

A

HCL Representation:

Eq = (A == B)

Assume 32-bit word size.

HCL representation

Equality operation

Generates Boolean value

CS429 Slideset 5: 23 Logic Design

Bit Multiplexor

Out

a

b

S

HCL Expression:

int out = (s && a) || (!s && b);

Control signal s selects between two inputs a and b.

Output is a when s == 1, and b otherwise.

CS429 Slideset 5: 24 Logic Design

Word Multiplexor

S

...

out31

b0

out0

b31

a0

a31

Word-level representation:

A

B

S

OutMux

HCL Representation:

int Out = [

s : A;

1 : B;

];

Select input word A or B
depending on control signal S.

CS429 Slideset 5: 25 Logic Design

Word Examples

Minimum of 3 words

4−way Multiplexor

MIN3

MUX4
Out4

Min3
C

B

A

S1
S0

D1

D2

D3

D0

int Min3 = [

A <= B && A <= C : A;

B <= A && B <= C : B;

1 : C;

]

int Out4 = [

!s1 && !s0 : D0;

!s1 : D1;

!s0 : D2;

1 : D3;

]

What do these do?

CS429 Slideset 5: 26 Logic Design

Constructing an ALU

An ALU is an Arithmetic Logic Unit

Multiple functions: add, subtract, and, xor, others

Combinational logic to perform functions.

Control signals select function to be performed.

Modular: multiple instances of 1-bit ALU

CS429 Slideset 5: 27 Logic Design

A 4-bit ALU

Combinational logic: continuously responding to inputs.

Control signal selects function computed; Y86 ALU has only 4
arithmetic/logical operations.

Also computes values of condition codes. Note these are not
the same as the three Y86 flags:

OF: overflow flag
ZF: zero flag
SF: sign flag

CS429 Slideset 5: 28 Logic Design

The Y86 ALU in HCL

A

L

U

OF

ZF
SF

X

Y

A

L

U

OF

ZF
SF

X

Y

A

L

U

OF

ZF
SF

X

Y

A

L

U

OF

ZF
SF

X

Y

X+Y X−Y X&Y X^Y

<s1,s0>=00 <s1,s0>=01 <s1,s0>=10 <s1,s0>=11

int Out = [

!s1 && !s0: X+Y;

!s1 && s0 : X-Y;

s1 && !s0: X&Y;

1 : XˆY;

];

CS429 Slideset 5: 29 Logic Design

Sequential Logic

How would you design a circuit that records a bit? What does that
even mean?

CS429 Slideset 5: 30 Logic Design

Sequential Logic

How would you design a circuit that records a bit? What does that
even mean?

Ideally, you’d like a
bi-stable device (latch)
as follows:

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

Enable

Q
Data

The value on line Q is
the current stored value.

To store a new value:

1 Line Enable should be low (0).

2 Place the bit to store on line Data.

3 Raise Enable to high (1).

4 The value on line Data is stored in
the device.

5 Lower Enable to low (0).

6 Reading Q returns the stored bit
until next store.

Such “state-holding” devices are called sequential logic as opposed
to combinational logic.

CS429 Slideset 5: 31 Logic Design

SR Flip Flop: Storing a Bit

An SR flip flop is a step in the
direction of a latch.

Pulse (temporarily raise) the R
(reset) input to record a 0.

Pulse the S (set) input to record
a 1.

Characteristic table

S R Qnext Action

0 0 Q hold state
0 1 0 reset
1 0 1 set
1 1 X not allowed

This is not very convenient because it requires pulsing either S or
R to record a bit.

CS429 Slideset 5: 32 Logic Design

Gated D Latch: Store and Access One Bit

_
Q

QD

CP

Higher level representation
D Latch Truth table

E/CP D Q Q Comment

0 X Q Q No change
1 0 0 1 Reset
1 1 1 0 Set

E (enable) and CP (clock pulse) are just two
names for the same input.

CS429 Slideset 5: 33 Logic Design

A 4-bit Register

4 D latches:

All share the E/CP (aka WE
or Write Enable) input

D0–D3 are the data input

Q0–Q3 are the output

_
Q

_
Q

_
Q

_
Q

QD

CP

QD

CP

QD

CP

QD

CPCP

D2

D3

D1

D0 Q0

Q1

Q2

Q3

CS429 Slideset 5: 34 Logic Design

Register File Abstraction

Register file provides the CPU
with temporary, fast storage.

N registers.

Each of K bits.

L output ports.

Suppose we want eight 4-bit
registers and one output port.

WE

Data in

Reg

/3

/4

/1

Data out

/4

CS429 Slideset 5: 35 Logic Design

Race-through Condition with D Latches

Write Enable (WE) must be held at “1” long enough to allow:

Data to be read;

Operation (e.g., addition) to be performed;

Result to be stored in target register.

ALU
Register

File

CS429 Slideset 5: 36 Logic Design

Edge Triggered Flip Flops

An edge-triggered flip-flop changes states either at the positive
edge (rising edge) or at the negative edge (falling edge) of the
clock pulse on the control input.

A register is made up of several flip flops, each providing
storage and access for an individual bit.

A register file is made up of several registers and control logic

CS429 Slideset 5: 37 Logic Design

Clocking

The clock acts to enforce timing control on the chip.

An integral part of every synchronous system.

Can be global

Clock Frequency = 1 / clock period

Measured in cycles per second (Hertz)

1 KHz = 1000 cycles / second

1ns (10−9 seconds) = 1GHz (109) clock frequency

Higher frequency means faster machine speed.

CS429 Slideset 5: 38 Logic Design

Random Access Memory (RAM)

Stores many words

Conceptually, a large array where each row is uniquely
addressable.

In reality, much more complex to increase throughput.

Multiple chips and banks, interleaved, with multi-word
operations.

Many implementations

Dynamic (DRAM) is large, inexpensive, but relatively slow.

1 transistor and 1 capacitor per bit.
Reads are destructive.
Requires periodic refresh.
Access time takes hundreds of CPU cycles.

Static (SRAM) is fast but expensive.

6 transistors per bit.
Streaming orientation.

CS429 Slideset 5: 39 Logic Design

Summary

Computation

Performed by combinational logic.

Implements boolean functions.

Continuously reacts to inputs.

Storage

Registers: part of the CPU.

Each holds a single word.
Used for temporary results of computation.
Loaded on rising clock.

Memory is much larger.

Variety of implementation techniques.

CS429 Slideset 5: 40 Logic Design

