
CS429: Computer Organization and Architecture
Instruction Set Architecture II

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: February 26, 2020 at 14:01

CS429 Slideset 7: 1 Instruction Set Architecture II

Topics of this Slideset

Assembly Programmer’s Execution Model

Accessing Information

Registers

Memory

Arithmetic operations

BTW: We’re through with Y86 for a while, and starting the x86.
We’ll come back to the Y86 later for pipelining.

CS429 Slideset 7: 2 Instruction Set Architecture II

Intel x86 Processors

x86 processors totally dominate the laptop/desktop/server market.

Evolutionary Design

Starting in 1978 with 8086

Added more features over time.

Complex Instruction Set Computer (CISC)

Still support many old, now obsolete, features.

There are many different instructions with many different
formats, but only a small subset are encountered with Linux
programs.

Hard to match performance of Reduced Instruction Set
Computers (RISC), though Intel has done just that!

CS429 Slideset 7: 3 Instruction Set Architecture II

x86 Evolution: Programmer’s View

Machine Evolution

Model Date Trans.

386 1985 0.3M
Pentium 1993 3.1M
Pentium/MMX 1997 4.5M
Pentium Pro 1995 6.5M
Pentium III 1999 8.2M
Pentium 4 2001 42M
Core 2 Duo 2006 291M
Core i7 2008 731M
Core i7-8086K 2018 3B

Added Features

Instructions to support multimedia operations
Instructions to enable more efficient conditional operations
Transition from 32 to 64 bits
More cores

CS429 Slideset 7: 4 Instruction Set Architecture II

x86 Clones: Advanced Micro Devices (AMD)

Historically

AMD has followed behind Intel

A little bit slower, a lot cheaper

Then

Recruited top circuit designers from Digital Equipment Corp.
(DEC) and other downward trending companies

Built Opteron: tough competitor to Pentium 4

Developed x86-64, their own extension to 64 bits

Recent Years

Intel got its act together; leads the world in semiconductor
technology

AMD has fallen behind; relies on external semiconductor
manufacturers

CS429 Slideset 7: 5 Instruction Set Architecture II

x86 Evolution: Clones

Transmeta
Radically different approach to implementation.

Translate x86 code into “very long instruction word” (VLIW)
code.

Very high degree of parallelism.

Centaur / Via

Continued evolution from Cyrix, the 3rd x86 vendor. Low
power, design team in Austin.

32-bit processor family.

At 2 GHz, around 2 watts; at 600 MHz around 0.5 watt.

64-bit processor family, used by HP, Lenovo, OLPC, IBM.

Very low power, only a few watts at 1.2 GHz.
Full virtualization and SSE support.

CS429 Slideset 7: 6 Instruction Set Architecture II

Definitions:

Architecture: (also ISA or instruction set architecture). The parts
of a processor design one needs in order to understand or write
assembly/machine code.

Examples: instruction set specification, registers

Microarchitecture: implementation of the architecture.

Examples: cache sizes and core frequency

Code Forms:

Machine code: the byte-level programs that a processor
executes

Assembly code: a human-readible textual representation of
machine code

Example ISAs:

Intel: x86, IA32, Itanium, x86-64

ARM: used in almost all mobile phones

CS429 Slideset 7: 7 Instruction Set Architecture II

Abstract vs. Concrete Machine Models

Machine Models

Memory Processor

C

Memory

c−codes

Processor

ALU

Regs

Stack

Assembly

Data Control
1) char 1) loops
2) int, float 2) conditionals
3) double 3) switch
4) struct, array 4) proc. call
5) pointer 5) proc. return

1) byte 1) branch/jump
2) 2-byte word 2) call
3) 4-byte long word 3) ret
4) 8-byte quad word
5) contiguous byte

allocation
6) address of initial byte

CS429 Slideset 7: 8 Instruction Set Architecture II

Assembly Programmer’s View

Registers

CPU

Condition
codes

Memory

Object Code

Program Code

OS Data

Stack

Addresses

Data

Instructions

RIP

Programmer Visible State

PC (Program Counter): address of
next instruction. Called %rip in
x86-64.

Condition codes:

Store status info about most
recent arithmetic operation.
Used for conditional branching.

Register file: heavily
used program data.

Memory

Byte addressable
array.
Code, user data,
(some) OS data.
Includes stack.

CS429 Slideset 7: 9 Instruction Set Architecture II

ISA Principles

Contract between programmer and the hardware.

Defines visible state of the system.
Defines how state changes in response to instructions.

For Programmer: ISA is model of how a program will execute.

For Hardware Designer: ISA is formal definition of the correct
way to execute a program.

With a stable ISA, SW doesn’t care what the HW looks like
under the hood.
Hardware implementations can change drastically.
As long as the HW implements the same ISA, all prior SW
should still run.
Example: x86 ISA has spanned many chips; instructions have
been added but the SW for prior chips still runs.

ISA specification: the binary encoding of the instruction set.

CS429 Slideset 7: 10 Instruction Set Architecture II

ISA Basics

Memory

Regs

Memory

Regs

Op Mode Ra Rb

After StateBefore State

Instruction

Data type

Interrupts / Events

Operations

Machine State

Memory organization

Register organization

Instruction formats

Addressing modes

Instruction types

CS429 Slideset 7: 11 Instruction Set Architecture II

Architecture vs. Implementation

Architecture: defines what a computer system does in response
to a program and set of data.

Programmer visible elements of computer system.

Implementation (microarchitecture): defines how a computer
does it.

Sequence of steps to complete operations.

Time to execute each operation.

Hidden “bookkeeping” function.

If the architecture changes, some programs may no longer run or
return the same answer. If the implementation changes, some
programs may run faster/slower/better, but the answers won’t
change.

CS429 Slideset 7: 12 Instruction Set Architecture II

Examples

Which of the following are part of the architecture and which are
part of the implementation? Hint: if the programmer can see/use
it (directly) in a program, it’s part of the architecture.

Number/names of general purpose registers

Width of memory bus

Binary representation of each instruction

Number of cycles to execute a FP instruction

Condition code bits set by a move instruction

Size of the instruction cache

Type of FP format

CS429 Slideset 7: 13 Instruction Set Architecture II

Turning C into Object Code

Code in files: p1.c, p2.c

For minimal optimization, compile with command:
gcc -Og p1.c p2.c -o p

Use optimization (-Og); new to recent versions of gcc

Put resulting binary in file p

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries (.a)

Compiler (gcc)

Assembler (gcc or as)

Linker (gcc or lo)

text

text

binary

binary

CS429 Slideset 7: 14 Instruction Set Architecture II

Compiling into Assembly

C Code (sum.c):

long plus(long x, long y);

void sumstore (long x, long y, long *dest) {

long t = plus(x, y);

*dest = t;

}

Run command: gcc -Og -S sum.c

produces file sum.s.

sumstore :

pushq %rbx # save %rbx

movq %rdx , %rbx # temp <-- dest

call plus

movq %rax , (% rbx) # *dest <-- t

popq %rbx # restore %rbx

ret

Warning: you may get different results due to variations in gcc
and compiler settings.

CS429 Slideset 7: 15 Instruction Set Architecture II

Assembly Characteristics

Minimal Data Types

“Integer” data of 1, 2, 4 or 8 bytes

Addresses (untyped pointers)

Floating point data of 4, 8 or 10 bytes

No aggregate types such as arrays or structures

Just contiguously allocated bytes in memory

Primitive Operations

Perform arithmetic functions on register or memory data

Transfer data between memory and register

Load data from memory into register
Store register data into memory

Transfer control

Unconditional jumps to/from procedures
Conditional branches

CS429 Slideset 7: 16 Instruction Set Architecture II

Object Code

0 x0400595 :

0x53

0x48 # total of

0x89 # 14 bytes

0xd3

0xe8 # each

inst

0xf2 # 1, 3, or

0xff # 5 bytes

0xff

0xff # starts

at

0x48 # addr

0x89 # 0

x0x00595

0x03

0x5b

0xc3

Assembler

Translates .s into .o

Binary encoding of each inst.

Nearly complete image of
executable code

Missing linkages between code in
different files

Linker

Resolves references between files

Combines with static run-time
libraries; e.g., code for malloc,

printf

Some libraries are dynamically
linked (just before execution)

CS429 Slideset 7: 17 Instruction Set Architecture II

Machine Instruction Example

*dest = t;

movq %rax , (% rbx)

0 x040059e : 48 89 03

C Code

Store value t where
designated by dest

Assembly

Move 8-byte value to
memory (quad word in x86
parlance).

Operands:

t: Register %rax

dest: Register %rbx

*dest: Memory M[%rbx]

Object Code

3-byte instruction

Stored at address 0x40059e

CS429 Slideset 7: 18 Instruction Set Architecture II

Disassembling Object Code

Disassembly using objdump. Offsets are relative.

> objdump −d s u m s t o r e . o

s u m s t o r e . o : f i l e fo rmat e l f 6 4 −x86 −64
D i sa s s emb ly o f s e c t i o n . t e x t :
0000000000000000 <sumstore >:

0 : 53 push %rbx
1 : 48 89 d3 mov %rdx ,% rbx
4 : e8 00 00 00 00 c a l l q 9 <sumstore+0x9>
9 : 48 89 03 mov %rax ,(% rbx)
c : 5b pop %rbx
d : c3 r e t q

objdump -d sum

Useful tool for examining object code

Analyzes bit pattern of series of instructions

Produces approximate rendition of assembly code

Can be run on either a.out (complete executable) or .o file

CS429 Slideset 7: 19 Instruction Set Architecture II

Alternate Disassembly

Disassembly using gdb. Offsets are relative.

Dump of assembler code for function sumstore :

0 x0000000000000000 <+0>: push %rbx

0 x0000000000000001 <+1>: mov %rdx ,% rbx

0 x0000000000000004 <+4>: callq 0x9 <sumstore +9>

0 x0000000000000009 <+9>: mov %rax ,(% rbx)

0 x000000000000000c <+12>: pop %rbx

0 x000000000000000d <+13>: retq

End of assembler dump.

Within gdb debugger:

gdb sum

disassemble sumstore

x/14xb sumstore

Examine the 14 bytes starting at sumstore.

CS429 Slideset 7: 20 Instruction Set Architecture II

What Can be Disassembled?

Anything that can be interpreted as executable code.

Disassembler examines bytes and reconstructs assembly
source.

% objdump -d WINWORD.EXE

WINWORD.EXE : file format pei -i386

No symbols in " WINWORD.EXE ".

Disassembly of section .text :

30001000 <.text >:

30001000: 55 push %ebp

30001001: 8b ec mov %esp , %ebp

30001003: 6a ff push $0xffffffff

30001005: 68 90 10 00 30 push $0x30001090

3000100 a: 68 91 dc 4c 30 push $0x304cdc91

CS429 Slideset 7: 21 Instruction Set Architecture II

Which Assembler?

Intel/Microsoft Format

lea rax , [rcx+rcx *4]

sub rsp , 8

cmp quad ptr[ebp -8], 0

mov rax , quad ptr[rax *4+10 h]

GAS/Gnu Format

leaq (%rcx ,%rcx ,4) , %rax

subq $8 ,% rsp

cmpq $0 , -8(% rbp)

movq $0x10 (,%rax ,4) ,%rax

Intel/Microsoft Differs from GAS

Operands are listed in opposite order:

mov Dest, Src movq Src, Dest

Constants not preceded by ’$’; denote hex with ’h’ at end.

10h $0x10

Operand size indicated by operands rather than operator
suffix.

sub subq

Addressing format shows effective address computation.

[rax*4+10h] $0x10(,%rax,4)

From now on we’ll always use GAS assembler format.
CS429 Slideset 7: 22 Instruction Set Architecture II

x86-64 Integer Registers

For each of the 64-bit registers, the LS 4 bytes are named 32-bit
registers.

Reg. LS 4 bytes Reg. LS 4 bytes

%rax %eax %r8 %r8d

%rbx %ebx %r9 %r9d

%rcx %ecx %r10 %r10d

%rdx %edx %r11 %r11d

%rsi %esi %r12 %r12d

%rdi %edi %r13 %r13d

%rsp %esp %r14 %r14d

%rbp %ebp %r15 %r15d

You can also reference the LS 16-bits (2 bytes) and LS 8-bits (1
byte). For the numbered registers (%r8–%r15) the components are
named e.g., %r8d (32-bits), %r8w (16-bits), %r8b (8-bits).

CS429 Slideset 7: 23 Instruction Set Architecture II

Decomposing the %rax Register

All of the x86’s 64-bit registers have 32-bit, 16-bit and 8-bit
accessible internal structure. It varies slightly among the different
registers. Example, only %rax, %rbx, %rcx, %rdx allow direct
access to byte 1 (%ah).

✛ ✲%rax (64)
✛ ✲%eax (32)

✛ ✲

%ax (16)

%ah %al

CS429 Slideset 7: 24 Instruction Set Architecture II

Some History: IA32 Registers

32-bit reg 16-bit reg 8-bit reg 8-bit Reg Use

%eax %ax %ah %al accumulator

%ecx %cx %ch %cl counter

%edx %dx %dh %dl data

%ebx %bx %bh %bl base

%esi %si %sil* source index

%edi %di %dil* dest. index

%esp %sp %spl* stack pointer

%ebp %bp %bpl* base pointer

*These are only available in 64-bit mode.

CS429 Slideset 7: 25 Instruction Set Architecture II

Simple Addressing Modes (Same as Y86)

Immediate: value

movq $0xab, %rbx

Register: Reg[R]

movq %rcx, %rbx

Normal (R): Mem[Reg[R]]

Register R specifies memory address.
This is often called indirect addressing.
Aha! Pointer dereferencing in C

movq (%rcx), %rax

Displacement D(R): Mem[Reg[R]+D]

Register R specifies start of memory region.
Constant displacement D specifies offset

movq 8(%rcb),%rdx

CS429 Slideset 7: 26 Instruction Set Architecture II

Moving Data

Moving Data:

Form: movq Source, Dest

Move 8-byte “long” word

Lots of these in typical code

Operand Types

Immediate: Constant integer data
Like C constant, but prefixed with ’$’
E.g., $0x400, $-533

Encoded with 1, 2, or 4 bytes

Register: One of 16 integer registers
Example: %rax, %r13

But %rsp is reserved for special use
Others have special uses for particular instructions

Memory: source/dest is first address of block
Example: (%rax), 0x20(%rbx)

Various “addressing modes”

CS429 Slideset 7: 27 Instruction Set Architecture II

movq Operand Combinations

Unlike the Y86, we don’t distinguish the operator depending on
the operand addressing modes.

Source Dest. Assembler C Analog

Immediate Register movq $0x4,%rax temp = 0x4;

Immediate Memory movq $-147,(%rax) *p = -147;

Register Register movq %rax,%rdx temp2 = temp1;

Register Memory movq %rax,(%rdx) *p = temp;

Memory Register movq (%rax),%rdx temp = *p

Direct memory-memory transfers are not supported.

CS429 Slideset 7: 28 Instruction Set Architecture II

Addresses and Pointers in C

C programming model is close to machine language.

Machine language manipulates memory addresses.

For address computation;
To store addresses in registers or memory.

C employs pointers, which are just addresses of primitive data
elements or data structures.

Examples of operators * and &:

int a, b; /* declare integers a and b */

int *a_ptr; /* a is a pointer to an integer */

a_ptr = a; /* illegal, types don’t match*/

a_ptr = &a; /* a ptr holds address of a */

b = *a_ptr; /* dereference a ptr and assign value to b */

CS429 Slideset 7: 29 Instruction Set Architecture II

Using Simple Addressing Modes

void swap(long *xp , long *yp

)

{

long t0 = *xp;

long t1 = *yp;

*xp = t1;

*yp = t0;

}

swap:

movq (% rdi), %rax

movq (% rsi), %rdx

movq %rdx , (% rdi)

movq %rax , (% rsi)

ret

CS429 Slideset 7: 30 Instruction Set Architecture II

Understanding Swap (1)

void swap(long *xp , long *yp

)

{

long t0 = *xp;

long t1 = *yp;

*xp = t1;

*yp = t0;

}

swap:

movq (% rdi), %rax

movq (% rsi), %rdx

movq %rdx , (% rdi)

movq %rax , (% rsi)

ret

Register Value comment

%rdi xp points into memory
%rsi yp points into memory
%rax t0 temporary storage
%rdx t1 temporary storage

CS429 Slideset 7: 31 Instruction Set Architecture II

Understanding Swap (2)

swap:

movq (% rdi), %rax # t0 = *xp

movq (% rsi), %rdx # t1 = *yp

movq %rdx , (% rdi) # *xp = t1

movq %rax , (% rsi) # *yp = t0

ret

Initial State:

Registers
%rdi 0x120

%rsi 0x100

%rax

%rdx

Memory
123 0x120

0x118

0x110

0x108

456 0x100

CS429 Slideset 7: 32 Instruction Set Architecture II

Understanding Swap (3)

swap:

movq (% rdi), %rax # t0 = *xp , <-- PC here

movq (% rsi), %rdx # t1 = *yp

movq %rdx , (% rdi) # *xp = t1

movq %rax , (% rsi) # *yp = t0

ret

Registers
%rdi 0x120

%rsi 0x100

%rax 123

%rdx

Memory
123 0x120

0x118

0x110

0x108

456 0x100

CS429 Slideset 7: 33 Instruction Set Architecture II

Understanding Swap (4)

swap:

movq (% rdi), %rax # t0 = *xp

movq (% rsi), %rdx # t1 = *yp , <-- PC here

movq %rdx , (% rdi) # *xp = t1

movq %rax , (% rsi) # *yp = t0

ret

Registers
%rdi 0x120

%rsi 0x100

%rax 123

%rdx 456

Memory
123 0x120

0x118

0x110

0x108

456 0x100

CS429 Slideset 7: 34 Instruction Set Architecture II

Understanding Swap (5)

swap:

movq (% rdi), %rax # t0 = *xp

movq (% rsi), %rdx # t1 = *yp

movq %rdx , (% rdi) # *xp = t1 , <-- PC here

movq %rax , (% rsi) # *yp = t0

ret

Registers
%rdi 0x120

%rsi 0x100

%rax 123

%rdx 456

Memory
456 0x120

0x118

0x110

0x108

456 0x100

CS429 Slideset 7: 35 Instruction Set Architecture II

Understanding Swap (6)

swap:

movq (% rdi), %rax # t0 = *xp

movq (% rsi), %rdx # t1 = *yp

movq %rdx , (% rdi) # *xp = t1

movq %rax , (% rsi) # *yp = t0 , <-- PC here

ret

Registers
%rdi 0x120

%rsi 0x100

%rax 123

%rdx 456

Memory
456 0x120

0x118

0x110

0x108

123 0x100

CS429 Slideset 7: 36 Instruction Set Architecture II

Simple Addressing Modes

Immediate: value

movq $0xab, %rbx

Register: Reg[R]

movq %rcx, %rbx

Normal (R): Mem[Reg[R]]

Register R specifies memory address.
This is often called indirect addressing.
Aha! Pointer dereferencing in C

movq (%rcx), %rax

Displacement D(R): Mem[Reg[R]+D]

Register R specifies start of memory region.
Constant displacement D specifies offset

movq 8(%rcb),%rdx

CS429 Slideset 7: 37 Instruction Set Architecture II

Indexed Addressing Modes

Most General Form:

D(Rb, Ri, S) Mem[Reg[Rb] + S*Reg[Ri] + D]

D: Constant “displacement” of 1, 2, 4 or 8 bytes

Rb: Base register, any of the 16 integer registers

Ri: Index register, any except %rsp (and probably not %rbp)

S: Scale, must be 1, 2, 4 or 8.

Special Cases:

(Rb, Ri) Mem[Reg[Rb] + Reg[Ri]]

D(Rb, Ri) Mem[Reg[Rb] + Reg[Ri] + D]

(Rb, Ri, S) Mem[Reg[Rb] + S * Reg[Ri]]

CS429 Slideset 7: 38 Instruction Set Architecture II

Addressing Modes

Type Form Operand value Name

Immediate $D D Immediate
Register Ea R[Ea] Register
Memory D M[D] Absolute
Memory (Ea) M[R[Ea]] Indirect
Memory D(Eb) M[D + R[Eb]] Base + displacement
Memory (Eb , Ei), M[R[Eb] + R[Ei]] Indexed
Memory D(Eb , Ei), M[D + R[Eb] + R[Ei]] Indexed
Memory (, Ei , s) M[R[Ei] · s] Scaled indexed
Memory D(, Ei , s) M[D + R[Ei] · s] Scaled indexed
Memory (Eb , Ei , s), M[R[Eb] + R[Ei] · s] Scaled indexed
Memory D(Eb , Ei , s) M[D + R[Eb] + R[Ei] · s] Scaled indexed

The scaling factor s can only be 1, 2, 4, or 8.

CS429 Slideset 7: 39 Instruction Set Architecture II

Address Computation Example

%rdx 0xf000

%rcx 0x100

Expression Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx, %rcx) 0xf000 + 0x100 0xf100

(%rdx, %rcx, 4) 0xf000 + 4*0x100 0xf400

0x80(,%rdx, 2) 2*0xf000 + 0x80 0x1e080

0x80(%rdx, 2) Illegal. Why?

0x80(,%rdx, 3) Illegal. Why?

CS429 Slideset 7: 40 Instruction Set Architecture II

Addressing Mode Example

Indexed addressing modes are extremely useful when iterating over
an array.

long sumArray (long A[], int len) {

long i;

long sum = 0;

for (i = 0; i < len; i++)

sum += A[i];

return sum;

}

What is the type of A?

Why do we need len? Could we just call len(A)?

CS429 Slideset 7: 41 Instruction Set Architecture II

Addressing Mode Example

> gcc -S -Og test.c

causes sumArray on the previous slide to compile to:

sumArray :

movl $0 , %eax

movl $0 , %edx

jmp .L2

.L3:

addq (%rdi ,%rdx ,8) , %rax

addq $1 , %rdx

.L2:

movslq %esi , %rcx

cmpq %rcx , %rdx

jl .L3

rep ret

CS429 Slideset 7: 42 Instruction Set Architecture II

Another Example

Suppose we want to add val to each of the elements of array.

include <stdio .h>

void addnum (int array [], int val , int len) {

int i;

for (i = 0; i < len; i++)

array [i] += val;

}

CS429 Slideset 7: 43 Instruction Set Architecture II

Assembly

addnum :

movl $0 , %eax

jmp .L2

.L3:

movslq %eax , %rcx

addl %esi , (%rdi ,%rcx ,4)

addl $1 , %eax

.L2:

cmpl %edx , %eax

jl .L3

rep ret

CS429 Slideset 7: 44 Instruction Set Architecture II

Some Arithmetic Operations

Two operand instructions:

Format Computation
addq Src, Dest Dest = Dest + Src

subq Src, Dest Dest = Dest - Src

imulq Src, Dest Dest = Dest * Src

salq Src, Dest Dest = Dest << Src same as shlq

sarq Src, Dest Dest = Dest >> Src arithmetic
shrq Src, Dest Dest = Dest >> Src logical
xorq Src, Dest Dest = Dest ˆ Src

andq Src, Dest Dest = Dest & Src

orq Src, Dest Dest = Dest | Src

Watch out for argument order!

There’s no distinction between signed and unsigned. Why?

For shift operations Src must be a constant or %cl.

CS429 Slideset 7: 45 Instruction Set Architecture II

Some Arithmetic Operations

One operand instructions:

Format Computation
incq Dest Dest = Dest + 1

decq Dest Dest = Dest - 1

negq Dest Dest = -Dest

notq Dest Dest = ˜Dest

More instructions in the book.

CS429 Slideset 7: 46 Instruction Set Architecture II

Address Computation Instruction

Form: leaq Src, Dest

Src is address mode expression.

Sets Dest to address denoted by the expression

LEA stands for “load effective address.”

After the effective address computation, place the address, not the
contents of the address, into the destination.

CS429 Slideset 7: 47 Instruction Set Architecture II

Address Computation Instruction: movq vs. leaq

Consider the following computation:

Reg. Value

%rax 0x100
%rbx 0x200

movq 0 x10(%rbx , %rax , 4) , %r c x
l e a q 0 x10(%rbx , %rax , 4) , %rdx

After this sequence,

%rcx will contain the contents of location 0x610;

%rdx will contain the number (address) 0x610.

Neither LEA nor MOV set condition codes.

What should the following do?

l e a q %rbx , %rdx

CS429 Slideset 7: 48 Instruction Set Architecture II

Address Computation Instruction: movq vs. leaq

Consider the following computation:

Reg. Value

%rax 0x100
%rbx 0x200

movq 0 x10(%rbx , %rax , 4) , %r c x
l e a q 0 x10(%rbx , %rax , 4) , %rdx

After this sequence,

%rcx will contain the contents of location 0x610;

%rdx will contain the number (address) 0x610.

Neither LEA nor MOV set condition codes.

What should the following do?

l e a q %rbx , %rdx

It really shouldn’t be legal since %rbx doesn’t have an address.
However, the semantics makes it equal to movq %rbx, %rdx.

CS429 Slideset 7: 49 Instruction Set Architecture II

Address Computation Instruction

The leaq instruction is widely used for address computations and
for some general arithmetic computations.

Uses:

Computing address without doing a memory reference:

E.g., translation of p = &x[i];

Computing arithmetic expressions of the form x + k × y ,
where k ∈ {1, 2, 4, 8}

Example:

long m12(long x)

{

return x*12;

}

Converted to ASM by compiler:

leaq (%rdi ,%rdi ,2) ,%rax # t <- x+x*2

salq $2 ,% rax # ret. t<<2

CS429 Slideset 7: 50 Instruction Set Architecture II

Arithmetic Expression Example

long arith

(long x, long y,

long z)

{

long t1 = x+y;

long t2 = z+t1;

long t3 = x+4;

long t4 = y * 48;

long t5 = t3 + t4;

long rval = t2 * t5;

return rval;

}

arith :

leaq (%rdi ,% rsi), %rax

addq %rdx , %rax

leaq (%rsi ,%rsi ,2) , %rdx

salq $4 , %rdx

leaq 4(% rdi ,% rdx), %rcx

imulq %rcx , %rax

ret

Interesting instructions:

leaq: address computation

salq: shift

imulq: multiplication, but only used once

CS429 Slideset 7: 51 Instruction Set Architecture II

Understanding our Arithmetic Expression Example

long arith

(long x, long y,

long z)

{

long t1 = x+y;

long t2 = z+t1;

long t3 = x+4;

long t4 = y*48;

long t5 = t3+t4;

long rval = t2*t5;

return rval;

}

a r i t h :
l e a q (% r d i ,% r s i) ,% rax # t1
addq %rdx ,% rax # t2
l e a q (% r s i ,% r s i , 2) ,% rdx
s a l q $4 ,% rdx # t4
l e a q 4(% r d i ,% rdx) ,% r c x # t5
imulq %rcx ,% rax # r v a l
r e t

Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z

%rax t1, t2, rval

%rdx t4

%rcx t5

CS429 Slideset 7: 52 Instruction Set Architecture II

ISA II: Summary

History of Intel processors and architectures

Evolutionary design leads to many quirks and artifacts

C, assembly, machine code

New forms of visible state: program counter, registers, etc.

Compiler must transform statements, expressions, procedures
into low-level instruction sequences

Assembly Basics: Registers, operands, move

The x86-64 move instructions cover a wide range of data
movement forms

Arithmetic

C compiler will figure out different instruction combinations to
carry out computation

CS429 Slideset 7: 53 Instruction Set Architecture II

