
FastMATHTM Overview
October 28, 2002

210/29/02

Overview

Market and economics
Intrinsity technology
Architecture decisions leading to matrix unit
Micro-architecture
Programming examples
Performance

310/29/02

Challenge for a new design

Intrinsity has Fast14 design methodology
which is 3-5x faster than synthesized logic

Intrinsity has small team compared to Intel,
AMD and others

Customers want standards, ease-of-use,
performance

Investors want 10X advantage over
competitors

410/29/02

Static v. Fast14 Technology

10 - 20 Gate Levels10 - 20 Logic Levels

D QD Q D Q

Traditional Static Logic

NDLTM Dynamic Logic

4 Logic Levels

4
Clocks

4 Logic Levels

4
Clocks

No
Latch

Dynamic gates for speed.

More functions per gate (more complex Boolean functions possible).

No latches needed in the pipeline.

Faster throughput, nearly 3x static logic.

510/29/02

Product strategy

Fast14 Circuits are best at computational problems: focus
on massive data parallelism in communications
applications

Parallel processing solutions:
§VLIW: hard to program; little parallelism in ISA
§SMP: synchronization overhead; complex to build
§Superscalar: limited bandwidth; complex to build
§SIMD: ideal for small kernel operations on a large

sequence of data
Customer still want ease of programming
§Use MIPSTM ISA as industry standard with plenty of

support
§ Integrate RISC core with a SIMD unit

610/29/02

Basic Product Concept

2 GHz
SIMD

Engine

2 GHz
MIPS32™
Processor

2 GHz
MIPS32™ CPU

MIPS32 Core and a wide
SIMD engine

• 16-32 SIMD elements

• Decode done by MIPS core

• 2 GHz operation for both

710/29/02

SIMD Unit Influences

Communications applications operate on
§Vector data
§Matrix data; including large matrices

Imaging applications operate on 4x4 data
Inter-element communications is frequent
16/32 way SIMD parallelism is the knee of the curve
Communications restricted by wire delays
Memory accesses can be up 50% of the code stream
Memory accesses require high-bandwidth
Low latency loads reduce register pressure and ease

programming

810/29/02

Architecture vs. physical
tradeoffs

2GHz and physical constraints in .13µ CMOS led to
§ 1 cycle adders must be 32b or smaller
§ 1 cycle broadcast between elements limits

distance to ~2mm
§Each matrix element estimated at .75x.75mm
§Memory paths limited to 1024 wires for 1 cycle

accesses
These constraints and previous ones led to
§ 16 matrix elements arranged 4x4 array
§Each element operates on 16b or 32b

910/29/02

Matrix Processing
Elements Connections

• Each element can
broadcast a value to
all the other
elements in its row
and column

• Each element can
use operands from
local registers or
from a broadcast
during each
operation

1010/29/02

Instruction Set Architecture

ALU

load

multiply

add cmp
subf
and
or
nor
xor
andn

popc
set

mflo
mfhi

pack
select

unpack

shifts

load store

mul madd
msub

slc
src
sur
sdr

selectrow
selectcol

alignword rotate

block4transpose

simple broadcast

complex broadcast

matmul sumrow

sumcol

broadcast/operate

Operation Classes

MuxMux

+ x

Transmit Row / Col
Store
Receive Row / Col

16 x 32-bit Register File16 x 32-bit Register File

ConditionCondition
CodeCode

Dual independent 40-bit accumulatorsDual independent 40-bit accumulators

Complete
array stores
16 32-bit 4 x
4 matrices

table

1110/29/02

Matrix Unit Memory
Support

1 MB Level 2 cache
provides direct access
to large data sets

• Is in essence a 1 MB L1
cache for matrix unit

• Loads appear to be 1
cycle

• 4-way set-associative

• Operates at 1 GHz

• 32 GB/s sustained

• Configurable as cache or
SRAM in 512 KB
increments

• Coherent to on-chip
memory and I/O

1 MB Level 2 Cache

16 GB/s 16 GB/s 32 GB/s

2 GHz
MIPS32™ CPU

1210/29/02

FastMath™
Adaptive Signal Processor

Dual RapidIO™ ports
provide high-bandwidth
system I/O

• Standard fabric interface
with broad industry
support

• 8-bit LVDS interface, up
to 500 MHz operation

• Data transferred on each
clock edge (DDR)

• Simultaneous 1 GB/s
input and output per port

• Total bandwidth of
4 GB/s

Dual RapidIO Ports

1 GB/s

1 GB/s 1 GB/s

1 GB/s

16 GB/s 16 GB/s 64 GB/s

2 GHz
MIPS32™ CPU

1310/29/02

DMA engine reduces
CPU overhead

• 2-channel + inbound
RapidIO port interface

• Descriptor-based

• Global shared memory

FastMath™
Adaptive Signal Processor

General Purpose I/O

• 66 MHz

• 8- or 32-bit interface to
ROM, Flash, SRAM, etc.

Memory controller

• 64-bit, DDR-400

• 3.2 GB/s

DDR 400
3.2 GB/s

1 GB/s

1 GB/s 1 GB/s

1 GB/s

16 GB/s 16 GB/s 64 GB/s

2 GHz
MIPS32™ CPU

1410/29/02

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 ALU P11ALU Operation

• 12 pipeline stages

Fetch
Instruction

Cache
Decode-
Dispatch Write

CPU Pipeline

1510/29/02

CPU Pipeline

Fetch

P0

Instruction
Cache

P1 P2 P3

Decode-
Dispatch

P4 P5 P6 ALU

Write

Load P8 P9 P10P11

Data
Cache

• ALU is staged for a 1 cycle load-to-use latency

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 ALU P11ADD

• 12 pipeline stages

1610/29/02

CPU Pipeline

Fetch

P0

Instruction
Cache

P1 P2 P3

Decode-
Dispatch

P4 P5 P6 ALU

Write

Load P8 P9 P10P11

Data
Cache

• ALU is staged for a 1 cycle load-to-use latency

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 ALU P11

• 12 pipeline stages

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 ALU P11AND

• ALU operations complete in 1 cycle and run back-to-back

ADD

1710/29/02

Fetch

P0

Instruction
Cache

P1 P2 P3

Decode-
Dispatch

P4 P5 P6 P7 P8 P9 ALU

Write

P11

Fast14
™ Technology for 2 GHz

Single-cycle ALU in 4 gate delays

125ps
125ps

125ps
125ps

A

B

Result

High-speed, high-function
NDL™ gates

a1..0

b1..0

add-sub

Output
Stage

clk

clk
out

1810/29/02

Matrix Unit Instruction
Classes

Memory Access
load.m $m0,0($r1) Load a 64-byte matrix
store.m $m0,0($r1) Store a 64-byte matrix

ALU / Logical / Comparison
add.m.m $m0,$m1,$m2 Add 2 matrices element-wise
cmple.s.m $mcc1,$m0,$r3 Compare each element of matrix 0 with scalar in r3

Multiply/Accumulate
mullh.m.m $mac0,$m0,$m1 Mul element-wise low halfword of m0 w/ high of m1
maddhh.m.m $mac1,$m0,$m1 Mul element-wise high halfwords of m0 and m1 and

accumulate

Inter-Element Movement
trans.m $m0,$m1 Transpose of elements in m1 to m0
block4.m $m0block Rearrange m0..m3 from 1x16 vectors to 4x4 matrices
srcol.i.m $m0,$m1,0 Shift matrix m1 right by a column and fill w/ 0’s

Inter-Element Computation
matmulhl.m.m $mac1,$m1,$m2 Matrix multiply high halfwords of m1 and low of m2
sumrow.m $m0,$m1sum Elements of m1 across rows and store sums in m0

1910/29/02

Application Example:
Wireless Basestation

Goal: Increase system capacity through improved spectral efficiency

Technique: Parallel User Interference Cancellation

• Use knowledge of current CDMA spreading codes to determine
correlated interference between users

Matrix-Matrix
Multiplication

Y = B R

Y = Improved user stream
(Nbits Nuser)

B = Hard decision of user
stream (Nbits Nuser)

R = Multi-user correlation
matrix (Nuser Nuser)

chip delay = 1

correlation = 2/8

1 0 01 1 100

0 0 0 1 0 1 11

user 0

user 1

Compute cross-correlation of all users’
spreading codes:

Iteratively use correlation values to
simultaneously cancel out interference
between users:

user 0

user 1

0.6 - (2/8 * -0.4) = 0.7 - (2/8 * -0.55) = 0.83

-0.4 - (2/8 * 0.6) = -0.55 - (2/8 * 0.7) = -0.73

2010/29/02

"Blockifying" Matrix Multiply
into a 4x4 Sub-matrix

Y = BT R

• Large matrix-multiply can be broken down into
multiplications of smaller sub-matrix

• The FastMATH™ processor provides an intrinsic 4 x 4
matrix-multiply operation as a building block

B = R =

0,0

1,0

2,0

3,0

0,1

1,1

2,1

3,1

0,2

1,2

2,2

3,2

0,3

1,3

2,3

3,3

0,0

1,0

2,0

3,0

0,1

1,1

2,1

3,1

0,2

1,2

2,2

3,2

0,3

1,3

2,3

3,3

2110/29/02

Large matrix stored in memory in
normal form
load.m gets 16 contiguous words of
memory (vector), not a 4 x 4
submatrix
Solution:
1) Load 4 matrices that are
separated by the large matrix
stride (must be 64-byte
aligned)
2) Perform block4 on the matrices
(specified by first matrix: m0)
3) matrices are now in block form

load.m m0, 0(b)
load.m m1, stride(b)
load.m m2, 2*stride(b)
load.m m3, 3*stride(b)
block4 m0

b
b+stride

b+stride*2
b+stride*3

m0 m1 m2 m3

m0 m1 m2 m3

Converting to Block Form

2210/29/02

Matrix-Multiply Instruction

Matrix multiply of two 4x4 sub-matrices
• 1 instruction
• 4 cycles (2 ns @ 2 GHz)

M00k x M1k0
k=0

3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

x=

M0 M1

Matmulhh.m.m M2,M0,M1

 for i= 0 to 3
for j = 0 to 3

sum = 0
for k = 0 to 3

sum = sum + M0(i,k) × M1(k,j)
M2(i,j) = sum

Matmulhh.m.m M2,M0,M1

 for i= 0 to 3
for j = 0 to 3

sum = 0
for k = 0 to 3

sum = sum + M0(i,k) × M1(k,j)
M2(i,j) = sum

M2

2310/29/02

FastMATHTM

 Adaptive Signal Processor

Incoming
Data

Local
Data

Outgoing
Data

2410/29/02

Butterfly Operation

P + Q
Complex addition

w * (P - Q)
Complex multiply
and subtraction

P

Q

w = “twist” or “twiddle factor”

Radix-2 DIF FFT Code
Example

Radix-2 "Decimation
in Frequency" FFT

• With 16-bit complex
(interleaved real and
imaginary) data

log2N stages of
butterflies:

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

2510/29/02

Re.im
0

Re.im
1

Re.im
2

Re.im
3

Re.im
4

Re.im
5

Re.im
6

Re.im
7

Re.im
8

Re.im
9

Re.im
10

Re.im
11

Re.im
12

Re.im
13

Re.im
14

Re.im
15

FastMATH Register File
Usage

Each matrix register can hold 16 complex values, with the
real and imaginary values kept in 16-bit partitions in a 32-
bit element value:

In all but last four stages, a butterfly works on paired
elements from two different matrices
Re.im

0
Re.im

1
Re.im

2
Re.im

3

Re.im
4

Re.im
5

Re.im
6

Re.im
7

Re.im
8

Re.im
9

Re.im
10

Re.im
11

Re.im
12

Re.im
13

Re.im
14

Re.im
15

Re.im
0

Re.im
1

Re.im
2

Re.im
3

Re.im
4

Re.im
5

Re.im
6

Re.im
7

Re.im
8

Re.im
9

Re.im
10

Re.im
11

Re.im
12

Re.im
13

Re.im
14

Re.im
15

+
Re.im

0
Re.im

1
Re.im

2
Re.im

3

Re.im
4

Re.im
5

Re.im
6

Re.im
7

Re.im
8

Re.im
9

Re.im
10

Re.im
11

Re.im
12

Re.im
13

Re.im
14

Re.im
15

2610/29/02

Butterfly Implementation

Complex multiply in butterfly:

re = re1*re2 - im1*im2
im = re1*im2 + re2*im1

Complex multiply in butterfly:

re = re1*re2 - im1*im2
im = re1*im2 + re2*im1

High/low variants of multiply used to form four
products, and the accumulators to form the
required sum and difference:

mulll.m acc0, cplx1, cplx2
msubhh.m acc0, cplx1, cplx2
mullh.m acc1, cplx1, cplx2
maddhl.m acc1, cplx1, cplx2
mflo.m re, acc0
mflo.m im, acc1

High/low variants of multiply used to form four
products, and the accumulators to form the
required sum and difference:

mulll.m acc0, cplx1, cplx2
msubhh.m acc0, cplx1, cplx2
mullh.m acc1, cplx1, cplx2
maddhl.m acc1, cplx1, cplx2
mflo.m re, acc0
mflo.m im, acc1

Pack word operation packs back into partitioned
16-bit real/imaginary format and rescale results:

packhhi.m.m cplx, im, re

Pack word operation packs back into partitioned
16-bit real/imaginary format and rescale results:

packhhi.m.m cplx, im, re

2710/29/02

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Selectcol dst, src, M_SWAP_TOP_BOTTOM_HALVES
M_SWAP_TOP_BOTTOM_HALVES = 10 10 10 10 11 11 11 11 00 00 00 00 01 01 01 01

Selectcol dst, src, M_SWAP_TOP_BOTTOM_HALVES
M_SWAP_TOP_BOTTOM_HALVES = 10 10 10 10 11 11 11 11 00 00 00 00 01 01 01 01

Intra-Matrix Butterflies
The Last Four Stages

Last four stages perform "intra-matrix" butterflies
§ Operations occur between elements of the same matrix

Use select row and select column operations to create a copy with swapped
elements
§ Stage 6: swap top and bottom halves
§ Stage 7: swap even/odd rows
§ Stage 8: swap left/right halves
§ Stage 9: swap even/odd columns

2810/29/02

Inner-Loop Implemented
Without Software

Pipelining
16-Cycle
Inner
Loop
(first 6 of
10 stages)

fftloop: Cycle
load.m m0, 0(r3) 0
srah.m m0, m0 0
addu r3, r3, 64 1
load.m m1, 0(r4) 2
srah.m m1, m1 2
addh.m.m m3, m0, m1 3
subfh.m.m m2, m1, m0 4
load.m m1, 0(r5) 4
mulhh.m a0, m2, m1 5
msubll.m a0, m2, m1 6
addu r4, r4, 64 6
mulhl.m a1, m2, m1 7
maddlh.m a1, m2, m1 8
store.m m3, -64(r3) 9
mflo.m m0, a0 10
addu r5, r5, 64 10
mflo.m m1, a1 12* (pipeline stall)
packhh.m m0, m0, m1 13
blt r3, r6, fftloop 13
store.m m0, -64(r4) 14 (15 for loop to first load instr)

2910/29/02

Software Pipelining
Removes Stalls

store.m m0, -64(r4) 12

Cycle
load.m m2, 0(r3) 0
srah.m m2, m2 0
load.m m3, 0(r4) 2* (pipeline stall)
srah.m m3, m3 2

fftloop:
addh.m m2, m2, m3 0

maddhlh.m a1, m2, m1 6
addu r4, r4, 64 6

store.m m2, 64(r3) 1
subfh.m.m m2, m1, m0 2
addu r3, r3, 64 2
load.m m1, 0(r5) 3
mulhh.m a0, m2, m1 3
msubll.m a0, m2, m1 4
mulhhl.m a1, m2, m1 5

mflo.m m1, a1 10

load.m m2, 0(r3) 7 (load and scaling operations inserted from
srah.m m2, m2 7 next loop iteration to hide mul latency)
mflo.m m0, a0 8
addu r5, r5, 64 8
load.m m3, 0(r4) 9 (load and scaling operations inserted from
srah.m m3, m3 9 next loop iteration to hide mflo latency)

packhh.m m0, m0, m1 11
blt r3, r6, fftloop 11

13-Cycle
Inner
Loop
(first 6 of
10 stages)

3010/29/02

FastMATH™ Performance
Example: FFT

3210/29/02

Intrinsity Is…

 A fabless semiconductor company based in Bee Caves, Texas
 Down the road from Jim-Bob’s BarBQ
 Formerly largest employer

 Staffed by about 90 farmers and cedar choppers

 Invented Fast14
™ Technology

 www.intrinsity.com

