

Fast Tree-Structured Computations and Memory Hierarchies

Siddhartha Chatterjee Department of Computer Science The University of North Carolina at Chapel Hill sc@cs.unc.edu

http://www.cs.unc.edu/Research/TUNE/

Collaborators

- UNC Chapel Hill
 - ➢ Prof. Sandeep Sen
 - > Vibhor Jain
 - > Shyam Mundhra
 - ➤ Sriram Sellappa
 - ➤ Erin Parker
 - > Tom Bodenheimer

- Duke
 - > Prof. Alvy Lebeck
 - > Mithuna Thottethodi
- ✤ U Michigan (Math)
 - ➢ Prof. Phil Hanlon

Class of Target Computations

Dense linear algebra

> Hierarchical tree-structured (HTS) algorithms

Sparse linear algebra

Application Examples

- N-body simulations
- ✤ Linear algebra
 - ➤ Matrix products
 - ➤ Eigenvalues
 - ➤ Fast transforms
 - ➢ Iterative methods for PDEs
- Radiosity/occlusion
- Computational geometry
- Others?

A Simple Example: Matrix Transposition

- Transpose an $n \times n$ matrix in-place
 - > A structured permutation
 - > Occurs as a sub-step of multi-dimensional FFT
- Seems like a simple enough computation
 - > Very little spatial locality
 - No temporal locality (reuse)
 - > Tricky to implement efficiently for large n

Matrix Transposition in More Detail

Array index space

Data cache view

- Pairs of elements of the same color in array index ••• space are exchanged
 - > Elements (i,j) and (j,i)
- Assuming row-major (or column-major) array layout **
 - > Contents of memory location ni+j and nj+i are exchanged
- No temporal locality **
 - > Each array element is accessed at most once
- Poor spatial locality *
 - > Exchanging (i,j) with (j,i)
 - > Exchanging (i,j+1) with (j+1,i)
 - > (*i*,*j*) and (*i*,*j*+1) are adjacent in data cache and TLB view
 - > How about (j,i) and (j+1,i)?
- Transposition is a *Murphy permutation* [Carter-* Gatlin 1999]

Fast Matrix Multiplication Operation Count

- $P1 = A1^*B1$ $P2 = A2^*B3$
- $P3 = A1^*B2$
- $P4 = A2^*B4$
- $P5 = A3^*B1$
- $P6 = A4^*B3$
- P7 = A3*B2
- $P8 = A4^*B4$
- C1 = P1 + P2
- C2 = P3 + P4
- C3 = P5 + P6
- C4 = P7 + P8

- P1 = (A1+A4) *(B1+B4) P2 = (A2+A4) *(B1) P3 = (A1) *(B3 B4) P4 = (A4) *(B2 B1) P5 = (A1+A3) *(B4) P6 = (A2 A1) *(B1+B3) P7 = (A3 A4) *(B2+B4)
- C1 = P1 + P4 P5 + P7 C2 = P2 + P4 C3 = P3 + P5C4 = P1 + P3 - P2 + P6
- ✤ 7 recursive products vs 8 recursive products
- Smaller operation count ($O(n^{Ig7}) vs O(n^3)$)

Fast Matrix Multiplication Memory Access

Standard Algorithm

Strassen's Algorithm

- Dependence of elements of C on elements of A (for 8x8 matrix)
- Standard algorithm: C[i,j] depends on A[i,0:7]
- Strassen's algorithm: C[i,j] depends on A[?,?]

What Comprises an Algorithm?

- The algebraic computation being performed
 - This determines the set of operations to be performed and the partial order (flow dependences) among them

The schedule of operations

- This is a linear order (consistent with the dependences) according to which we encode the operations
- > Program transformations such as loop tiling can change this order

The layout of data structures

Interactions between schedule and layout

- Each operation touches data, so the schedule determines the *logical* access sequence
- The layout applied to the logical access sequence determines the physical access sequence, which determines memory system performance

UT Austin 02/28/2000

Performance "Pressure Points" (1)

Algorithm

- >> Biggest wins can come from devising a better algorithm
- > Be aware of constants as well as growth rates

Processor

- Instruction count
- > Memory reference count
- Instruction scheduling

Performance "Pressure Points" (2)

Data cache

- > Limited associativity can significantly degrade running time
- > Miss latency affects crossover point between algorithmic alternatives
- Translation Lookaside Buffer (TLB)

> Limited number of entries can lead to thrashing

Registers

- Register tiling can help re-order the data transfers and ameliorate the effects of limited associativity in data cache
- Needs compiler assistance
- Array layout function
 - Changing the mapping from array index space to memory address space can benefit TLB and data cache

Three Questions for Today's Talk

- How can we model a multi-level memory hierarchy in a realistic and predictive manner?
- What alternative data organizations are beneficial for multilevel memory hierarchies?
- How well do such ideas work in practice?

Theoretical Models for Memory Hierarchies

Theoretical Memory Models

- Model 1: RAM model [Shepherdson-Sturgis 1963]
 - > All memory accesses have unit cost
 - > Performance metric: Total work
- Model 2: I/O model [Aggarwal-Vitter 1988]
 - Two-level model: slow and fast memory, block transfer
 - Does not model limited associativity

Performance metric: Number of transfers between memory levels

- Model 3: Cache-oblivious model [Frigo et al. 1999]
 - > Does not use cache parameters in algorithm design, only in analysis
 - Models fully-associative "tall" cache
 - > Performance metric: (Total work, memory activity)
- Model 4: Cache model [Sen-Chatterjee 2000]
 - > Derived starting from I/O model; models limited associativity
 - Emulation theorem

Performance metric: Total work, including memory activity UT Austin 02/28/2000
SC © 2000

I/O Model

- Model parameters
 - > *M*: size of internal memory
 - > B: block size for I/O transfers
 - > *n*: input size
- Computations can be performed only on elements present in internal memory
- Fully-associative mapping between external and internal memory blocks
- Goal of algorithm design: Minimize number of I/O operations

Cache Model

- Model parameters
 - > *M*: size of cache memory
 - > B: block size for transfers between cache and main memory
 - > *n*: input size
 - > *L*: cache miss penalty (normalized)
- Computations can be performed only on elements present in cache
- Fixed mapping between cache blocks and memory blocks
- No explicit control on cache locations
- ♦ Goal of algorithm design: Minimize (# steps + L-#of block transfers)

Emulation Theorem [Sen-Chatterjee 2000]

If an algorithm *A* in the I/O model uses *T* block transfers and *I* processing time, then the algorithm can be executed in the cache model in $O(I+(L+B)\cdot T)$ steps. The memory requirement is an additional *M*/*B*+2 blocks beyond that of the algorithm in the I/O model.

A block-efficient I/O algorithm can be emulated in $O(I+L \cdot T)$ steps.

- Key idea behind emulation: Careful copying of data structures into an additional buffer of size *M* over which we have explicit control
- Note that this causes extra memory references, but reduces the number of misses
 - In case of fast algorithm, might not be able to amortize copying cost over multiple uses of block

UT Austin 02/28/2000

Alternative Data Layouts

Layout and Cache Behavior

Making Tiles Contiguous

- Elements of a quadrant are contiguous
- Recursive layout
- Elements of a tile are contiguous
- No conflict misses in cache
- Better behavior expected in multi-level hierarchies
 - ➤ L2 cache

≫ TLB

Cache Mapping

20

Array Layout Functions

- Required characteristics
 - > One-to-one: Each index point (r,c) should map to a distinct location f
 - > Onto/Dense: "Almost each" f should correspond to some (r,c)

Desired characteristics

- > Cheap address computation
- Incremental address computation
 - e.g., L(r+1,c) n = L(r,c) = L(r,c+1) 1 for row-major layout
- Questions for non-standard layouts
 - > How much does it enhance locality/performance?
 - > What is the overhead of address computation?
 - > Can addresses be computed incrementally?
 - > What is the cost of format conversion?

Linear Layout Functions

- Array A with m rows and n columns

- These are canonical layouts
 - > A d-dimensional array has d! canonical layouts
 - > But language designer chooses and fixes one layout
- Canonical layouts favor one array axis, and dilate other axes

This can interact badly with caches and TLBs

Can we do better with non-linear layouts?

Non-linear Layout Functions

0	1	4	5
2	3	6	7
8	9	12	13
10	11	14	15

0	3	4	5
1	2	7	6
14	13	8	9
15	12	11	10

4-D blocked

Morton order

Hilbert order

Different locality properties
Different inclusion properties
Different addressing costs

4-D Blocked Layout

c r

n

14	The second			1
		100	4	
- 23	and.	1.2	1.00	

Point (r,c) in matrix, tiles are p*q

- Mapping R is nonlinear
 Integer quotient and remainder
- Lay out each tile contiguously in some canonical order
- Order tiles *lexicographically* by (t_r, t_c) co-ordinates
- Final layout is sum of two components

Recursive Layouts

*

С r m

n

il.	the second	12
1 mil		
	4	
hay		

- Mapping R is nonlinear ** > Integer quotient and remainder
- Lay out each tile contiguously in * some canonical order
- Order tiles *recursively* by (t_r, t_c) * co-ordinates
 - > Also called *quadtree* or *space*filling curve orderings
- Final layout is sum of two * components

UT Austin 02/28/2000

SC © 2000

Single-Orientation Layouts

Morton Order Layout


```
int offset(int r, int c, int n, int d, int k) {
    int b = 0;
    while (d > 0) {
        n /= 2;
        d--;
        b = 4*b+(r<n?(c<n?0:1):(c<n?2:3));
        r = r<n?r:r-n;
        c = c<n?c:c-n;
    }
    return (b*k+c)*k+r;
}</pre>
```

- Code above computes position of element (r,c) of n^*n matrix A
 - > *d* levels of subdivision
 - > k^*k tiles, column-major layout
- This is expensive!
 - > Exploit incremental address calculation capability within single tile
 - > "Embed" address calculation into control structure of algorithm

Appropriate Control Structures

Evaluation

Nonlinear Layouts: Absolute Performance

UT Austin 02/28/2000

Nonlinear Layouts: Performance Sensitivity

...to choice of tile size for a fixed problem size

...to variations in problem size for a fixed tile size

UT Austin 02/28/2000

Algorithm 1: RAM Model

```
for (i = 0; i < n; i++) {
  for (j = i+1; j < n; j++) {
    tmp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = tmp;
  }
}</pre>
```

- Optimal algorithm
 - > Statements executed $n \cdot (n-1)/2$ times
 - > Each statement costs constant number of operations
 - > Complexity of $\Theta(n^2)$
 - > Optimal up to constant factors
- Problem: Almost every loop iteration has misses
 - Catastrophic conflict misses in data cache
 - Thrashing in TLB

Algorithm 2: Transposing with Merge [Floyd 1972]

0	4	8	С
1	5	9	d
2	6	а	е
3	7	b	f

UT Austin 02/28/2000

SC © 2000

Algorithm 3: "Half-Copying"

Algorithm 4: "Full-Copying"

Algorithm 5: Cache-Oblivious

- Key idea
 - > Use divide-and-conquer to divide problems into smaller subproblems
 - > The sub-problems will fit in cache once they are small enough
- Cache parameters not required in algorithm design stage, only for algorithm analysis
- Uses a different schedule of operations

Algorithm 6: Recursive Layout

Experimental Platform

- 300 MHz UltraSPARC-II
- Memory architecture
 - > L1 data cache: direct-mapped, 32-byte blocks, 16KB capacity
 - > L2 data cache: direct-mapped, 64-byte blocks, 2MB capacity
 - ≫ RAM: 512MB
 - ➤ VM page size: 8KB
 - > Data TLB: fully associative, 64 entries
- Operating system: SunOS 5.6
- Compiler: SUN's Workshop Compilers 4.2

Comparative Performance of Algorithms

Memory System Behavior (n = 2048, b = 64)

Related Work

- Mathematics
 - Peano (1890), Hilbert (1891)
 - ➤ Lebesgue
- Libraries
 - PhiPACK (Berkeley)
 - > ATLAS (Tennessee)
 - ➢ FFTW (MIT)
 - ➤ Matrix⁺⁺ (UT Austin)
- Algorithms
 - > Frens/Wise (Indiana)
 - > I/O algorithms (Duke)
 - > Leiserson (MIT)
 - > Gustavson (IBM Research)

- Compilers
 - > Iteration space tiling
 - > Hierarchical tiling (UCSD)
 - Shackling (Cornell)
 - Lam/Rothberg/Wolf (Stanford)
 - Coleman/McKinley (UMass)
 - Rivera/Tseng (Maryland)
 - Cache Miss Equations (Princeton)
 - > Cierniak/Li (Rochester)

Future Directions

- Application to more problems
 - > Wavelet-based computations
 - > JPEG 2000
- Analytical modeling of memory hierarchy behavior for nonlinear layouts
 - > We have a solution technique
 - Applied to recursive matrix multiplication
 - Also works for set-associative caches

http://www.cs.unc.edu/Research/TUNE/