
 Fast Tree-Structured Computations and Memory Hierarchies

Siddhartha Chatterjee
Department of Computer Science
The University of North Carolina at Chapel Hill sc@cs.unc.edu

Collaborators

* UNC Chapel Hill
$>$ Prof. Sandeep Sen
$>$ Vibhor Jain
$>$ Shyam Mundhra
$>$ Sriram Sellappa
$>$ Erin Parker
$>$ Tom Bodenheimer
* Duke
$>$ Prof. Alvy Lebeck
$>$ Mithuna Thottethodi
* U Michigan (Math)
$>$ Prof. Phil Hanlon

Class of Target Computations

Dense
linear
algebra

Application Examples

* N-body simulations
* Linear algebra
$>$ Matrix products
$>$ Eigenvalues
$>$ Fast transforms
$>$ Iterative methods for PDEs
* Radiosity/occlusion
* Computational geometry
* Others?

A Simple Example: Matrix Transposition

* Transpose an $n \times n$ matrix in-place
$>$ A structured permutation
$>$ Occurs as a sub-step of multi-dimensional FFT
* Seems like a simple enough computation
$>$ Very little spatial locality
$>$ No temporal locality (reuse)
$>$ Tricky to implement efficiently for large n

Matrix Transposition in More Detail

* Pairs of elements of the same color in array index space are exchanged
$>$ Elements (i, j) and (j, i)
* Assuming row-major (or column-major) array layout
$>$ Contents of memory location $n i+j$ and $n j+i$ are exchanged
* No temporal locality
$>$ Each array element is accessed at most once
* Poor spatial locality
$>$ Exchanging (i, j) with (j, i)
$>$ Exchanging $(i, j+1)$ with $(j+1, i)$
$>(i, j)$ and $(i, j+1)$ are adjacent in data cache and TLB view
$>$ How about (j, i) and $(j+1, i)$?
* Transposition is a Murphy permutation [CarterGatlin 1999]

Fast Matrix Multiplication
 Operation Count

: 7 recursive products vs 8 recursive products
\therefore Smaller operation count ($\mathrm{O}\left(\mathrm{n}^{\lg 7}\right)$ vs $\mathrm{O}\left(\mathrm{n}^{3}\right)$)

Fast Matrix Multiplication Memory Access

Standard Algorithm

Strassen's Algorithm

* Dependence of elements of C on elements of A (for 8x8 matrix)
* Standard algorithm: C[i,j] depends on $A[i, 0: 7]$
: Strassen's algorithm: $\mathrm{C}[\mathrm{i}, \mathrm{j}]$ depends on $\mathrm{A}[?, ?]$

What Comprises an Algorithm?

* The algebraic computation being performed
$>$ This determines the set of operations to be performed and the partial order (flow dependences) among them
* The schedule of operations
$>$ This is a linear order (consistent with the dependences) according to which we encode the operations
$>$ Program transformations such as loop tiling can change this order
* The layout of data structures
* Interactions between schedule and layout
$>$ Each operation touches data, so the schedule determines the logical access sequence
$>$ The layout applied to the logical access sequence determines the physical access sequence, which determines memory system performance

Performance "Pressure Points" (1)

* Algorithm
$>$ Biggest wins can come from devising a better algorithm
$>$ Be aware of constants as well as growth rates
* Processor
$>$ Instruction count
$>$ Memory reference count
$>$ Instruction scheduling

Performance "Pressure Points" (2)

: Data cache
$>$ Limited associativity can significantly degrade running time
$>$ Miss latency affects crossover point between algorithmic alternatives

* Translation Lookaside Buffer (TLB)
$>$ Limited number of entries can lead to thrashing
* Registers
$>$ Register tiling can help re-order the data transfers and ameliorate the effects of limited associativity in data cache
$>$ Needs compiler assistance
* Array layout function
$>$ Changing the mapping from array index space to memory address space can benefit TLB and data cache

Three Questions for Today’s Talk

* How can we model a multi-level memory hierarchy in a realistic and predictive manner?
* What alternative data organizations are beneficial for multilevel memory hierarchies?
* How well do such ideas work in practice?

Theoretical Models for Memory Hierarchies

Theoretical Memory Models

* Model 1: RAM model [Shepherdson-Sturgis 1963]
$>$ All memory accesses have unit cost
$>$ Performance metric: Total work
* Model 2: I/O model [Aggarwal-Vitter 1988]
$>$ Two-level model: slow and fast memory, block transfer
- Does not model limited associativity
$>$ Performance metric: Number of transfers between memory levels
* Model 3: Cache-oblivious model [Frigo et al. 1999]
$>$ Does not use cache parameters in algorithm design, only in analysis
- Models fully-associative "tall" cache
$>$ Performance metric: (Total work, memory activity)
* Model 4: Cache model [Sen-Chatterjee 2000]
$>$ Derived starting from I/O model; models limited associativity
- Emulation theorem
$>$ Performance metric: Total work, including memory activity

I/O Model

External memory (slow, large)

B

Internal memory (fast, small)

* Model parameters
$>M$: size of internal memory
$>B$: block size for I/O transfers
$>n$: input size
* Computations can be performed only on elements present in internal memory
* Fully-associative mapping between external and internal memory blocks
* Goal of algorithm design: Minimize number of I/O operations

Cache Model

Main memory (slow, large)

B

Cache memory (fast, small)

* Model parameters
$>M$: size of cache memory
$>B$: block size for transfers between cache and main memory
$>n$: input size
$>L$: cache miss penalty (normalized)
* Computations can be performed only on elements present in cache
* Fixed mapping between cache blocks and memory blocks
* No explicit control on cache locations
* Goal of algorithm design: Minimize (\# steps + L•\#of block transfers)

Emulation Theorem [Sen-Chatterjee 2000]

If an algorithm A in the I/O model uses T block transfers and I processing time, then the algorithm can be executed in the cache model in $\mathrm{O}(I+(L+B) \cdot T)$ steps. The memory requirement is an additional $M / B+2$ blocks beyond that of the algorithm in the I/O model.

A block-efficient I/O algorithm can be emulated in $\mathrm{O}(I+L \cdot T)$ steps.

* Key idea behind emulation: Careful copying of data structures into an additional buffer of size M over which we have explicit control
* Note that this causes extra memory references, but reduces the number of misses
$>$ In case of fast algorithm, might not be able to amortize copying cost over multiple uses of block

Alternative Data Layouts

Layout and Cache Behavior

Cache

Direct-mapped cache with 4 sets and a block size of 4 matrix elts
 $\square \square$
-A tile is not contiguous in memory with row/column-major layout -Multi-word line size can cause cache capacity to be exceeded -Fixed mapping from memory to cache causes conflict misses

Making Tiles Contiguous

Memory

* Elements of a quadrant are contiguous
* Recursive layout
* Elements of a tile are contiguous
* No conflict misses in cache
* Better behavior expected in multi-level hierarchies
$>$ L2 cache $>$ TLB

Cache Mapping

Array Layout Functions

* Required characteristics
$>$ One-to-one: Each index point (r, c) should map to a distinct location f
$>$ Onto/Dense: "Almost each" f should correspond to some (r, c)
* Desired characteristics
$>$ Cheap address computation
$>$ Incremental address computation
- e.g., $\mathrm{L}(\mathrm{r}+1, \mathrm{c})-\mathrm{n}=\mathrm{L}(\mathrm{r}, \mathrm{c})=\mathrm{L}(\mathrm{r}, \mathrm{c}+1)-1$ for row-major layout
* Questions for non-standard layouts
$>$ How much does it enhance locality/performance?
$>$ What is the overhead of address computation?
$>$ Can addresses be computed incrementally?
$>$ What is the cost of format conversion?

Linear Layout Functions

* Array A with m rows and n columns
* $L_{R M}(r, c ; m, n)=n \cdot r+c$
* $L_{\text {CM }}(r, c ; m, n)=m \cdot c+r$
* These are canonical layouts
$>$ A d-dimensional array has d! canonical layouts
$>$ But language designer chooses and fixes one layout
* Canonical layouts favor one array axis, and dilate other axes
$>$ This can interact badly with caches and TLBs
* Can we do better with non-linear layouts?

Non-linear Layout Functions

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

4-D blocked

0	1	4	5
2	3	6	7
8	9	12	13
10	11	14	15

Morton order

0	3	4	5
1	2	7	6
14	13	8	9
15	12	11	10

Hilbert order
-Different locality properties
-Different inclusion properties
-Different addressing costs

4-D Blocked Layout

Recursive Layouts

* Point (r, c) in matrix, tiles are $\mathrm{p}^{*} \mathrm{q}$

* Mapping R is nonlinear
$>$ Integer quotient and remainder
* Lay out each tile contiguously in some canonical order
* Order tiles recursively by $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{c}}\right)$ co-ordinates
$>$ Also called quadtree or spacefilling curve orderings
* Final layout is sum of two components

Single-Orientation Layouts

Quad-Orientation Layouts

Morton Order Layout

0	1	4	5
2	3	6	7
8	9	12	13
10	11	14	15

```
int offset(int r, int c, int n, int d, int k) {
    int b = 0;
    while (d > 0) {
        n /= 2;
        d--;
        b = 4*b+(r<n?(c<n?0:1):(c<n?2:3));
        r = r<n?r:r-n;
        c = c<n?c:c-n;
    }
    return (b*k+c)*k+r;
}
```

* Code above computes position of element (r, c) of $n^{*} n$ matrix A
$>d$ levels of subdivision
$>k^{*} k$ tiles, column-major layout
* This is expensive!
$>$ Exploit incremental address calculation capability within single tile
$>$ "Embed" address calculation into control structure of algorithm

Appropriate Control Structures

Evaluation

Nonlinear Layouts: Absolute Performance

Nonlinear Layouts: Performance Sensitivity

...to choice of tile size for a fixed problem size
...to variations in problem size for a fixed tile size

Algorithm 1: RAM Model

```
for (i = 0; i < n; i++) {
    for (j = i+1; j < n; j++) {
        tmp = A[i][j];
        A[i][j] = A[j][i];
        A[j][i] = tmp;
    }
}
```

* Optimal algorithm
$>$ Statements executed $n \cdot(n-1) / 2$ times
$>$ Each statement costs constant number of operations
$>$ Complexity of $\Theta\left(n^{2}\right)$
$>$ Optimal up to constant factors
* Problem: Almost every loop iteration has misses
$>$ Catastrophic conflict misses in data cache
$>$ Thrashing in TLB

Algorithm 2: Transposing with Merge ${ }_{\text {[Floyd 1972] }}$

0	4	8	c
1	5	9	d
2	6	a	e
3	7	b	f

0	4	8	c	1	5	9	d	2	6	a	e	3	7	b	f

| 0 | 4 | 8 | c |
| :--- | :--- | :--- | :--- |\quad| 1 | 5 | 9 | d |
| :--- | :--- | :--- | :--- |
| 2 | 6 | a | e |\quad| 3 | 7 | b | f |
| :--- | :--- | :--- | :--- | :--- |

0	1	4	5	8	9	c	d

2	3	6	7	a	b	e	f

0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f

Algorithm 3: "Half-Copying"

Algorithm 4: "Full-Copying"

Algorithm 5: Cache-Oblivious

* Key idea
$>$ Use divide-and-conquer to divide problems into smaller subproblems
$>$ The sub-problems will fit in cache once they are small enough
* Cache parameters not required in algorithm design stage, only for algorithm analysis
* Uses a different schedule of operations

Algorithm 6: Recursive Layout

NW	NE
SW	SE

NW	NE
SW	SE

```
tr1(int src, int num)
{
```

```
    if (num==1) {
```

 if (num==1) {
 /* base case */
 /* base case */
 }
 }
 else {
 else {
 tr1(NW(src), num/4);
 tr1(NW(src), num/4);
 tr2 (NE (src),SW(src), num/4);
 tr2 (NE (src),SW(src), num/4);
 tr1(SE(src), num/4);
 tr1(SE(src), num/4);
 }
    ```
    }
```

```
tr2(int src, int dst, int num)
{
    if (num==1) {
    /* base case */
    }
    else {
        tr2 (NW (src),NW (dst), num/4);
        tr2 (NE (src),SW(dst), num/4);
        tr2(SW (src), NE (dst), num/4);
        tr2(SE (src),SE (dst), num/4);
    }
```


Experimental Platform

* 300 MHz UltraSPARC-II
* Memory architecture
$>$ L1 data cache: direct-mapped, 32-byte blocks, 16KB capacity
$>$ L2 data cache: direct-mapped, 64-byte blocks, 2MB capacity
$>$ RAM: 512MB
$>$ VM page size: 8KB
$>$ Data TLB: fully associative, 64 entries
* Operating system: SunOS 5.6
* Compiler: SUN’s Workshop Compilers 4.2

Comparative Performance of Algorithms

Memory System Behavior ($\mathrm{n}=2048$, $\mathrm{b}=64$)

Related Work

* Mathematics
$>$ Peano (1890), Hilbert (1891)
> Lebesgue
* Libraries
$>$ PhiPACK (Berkeley)
$>$ ATLAS (Tennessee)
$>$ FFTW (MIT)
$>$ Matrix $^{++}$(UT Austin)
* Algorithms
$>$ Frens/Wise (Indiana)
$>\mathrm{I} / \mathrm{O}$ algorithms (Duke)
$>$ Leiserson (MIT)
$>$ Gustavson (IBM Research)
* Compilers
$>$ Iteration space tiling
$>$ Hierarchical tiling (UCSD)
$>$ Shackling (Cornell)
$>$ Lam/Rothberg/Wolf (Stanford)
$>$ Coleman/McKinley (UMass)
$>$ Rivera/Tseng (Maryland)
$>$ Cache Miss Equations (Princeton)
$>$ Cierniak/Li (Rochester)

Future Directions

* Application to more problems
$>$ Wavelet-based computations
$>$ JPEG 2000
* Analytical modeling of memory hierarchy behavior for nonlinear layouts
$>$ We have a solution technique
- Applied to recursive matrix multiplication
- Also works for set-associative caches
http://www.cs.unc.edu/Research/TUNE/

