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Application Examples

v N-body simulations
v Linear algebra

â Matrix products
â Eigenvalues
â Fast transforms
â Iterative methods for PDEs

v Radiosity/occlusion
v Computational geometry
v Others?
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A Simple Example: Matrix Transposition

v Transpose an n×n matrix in-place
â A structured permutation
â Occurs as a sub-step of multi-dimensional FFT

v Seems like a simple enough computation
â Very little spatial locality
â No temporal locality (reuse)
â Tricky to implement efficiently for large n
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Matrix Transposition in More Detail
v Pairs of elements of the same color in array index

space are exchanged
â Elements (i,j) and (j,i)

v Assuming row-major (or column-major) array layout
â Contents of memory location ni+j and nj+i are

exchanged

v No temporal locality
â Each array element is accessed at most once

v Poor spatial locality
â Exchanging (i,j) with (j,i)
â Exchanging (i,j+1) with (j+1,i)
â (i,j) and (i,j+1) are adjacent in data cache and TLB

view
â How about (j,i) and (j+1,i)?

v Transposition is a Murphy permutation [Carter-
Gatlin 1999]

Array index space

Data cache view

TLB view
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Fast Matrix Multiplication
Operation Count

v 7 recursive products vs 8 recursive products
v Smaller operation count ( O(nlg7) vs O(n3) )

C1 C2

C4C3

A1 A2

A4A3

B1 B2

B4B3

=

*

C1 = P1 + P4 - P5 + P7
C2 = P2 + P4
C3 = P3 + P5
C4 = P1 + P3 - P2 + P6

P1 = (A1+A4) *(B1+B4)

P2 = (A2+A4) *(B1)

P3 = (A1)        *(B3 - B4)

P4 = (A4)        *(B2 - B1)

P5 = (A1+A3) *(B4)

P6 = (A2 - A1)*(B1+B3)

P7 = (A3 - A4)*(B2+B4)

P1 = A1*B1

P2 = A2*B3

P3 = A1*B2

P4 = A2*B4

P5 = A3*B1

P6 = A4*B3

P7 = A3*B2

P8 = A4*B4

C1 = P1 + P2
C2 = P3 + P4
C3 = P5 + P6
C4 = P7 + P8 
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Fast Matrix Multiplication
Memory Access

v Dependence of elements of C on elements of A (for
8x8 matrix)

v Standard algorithm: C[i,j] depends on A[i,0:7]
v Strassen’s algorithm: C[i,j] depends on A[?,?]

Standard Algorithm Strassen’s Algorithm
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What Comprises an Algorithm?

v The algebraic computation being performed
â This determines the set of operations to be performed and the partial

order (flow dependences) among them

v The schedule of operations
â This is a linear order (consistent with the dependences) according to

which we encode the operations
â Program transformations such as loop tiling can change this order

v The layout of data structures
v Interactions between schedule and layout

â Each operation touches data, so the schedule determines the logical
access sequence

â The layout applied to the logical access sequence determines the
physical access sequence, which determines memory system
performance
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Performance “Pressure Points” (1)

v Algorithm
â Biggest wins can come from devising a better algorithm
â Be aware of constants as well as growth rates

v Processor
â Instruction count
â Memory reference count
â Instruction scheduling
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Performance “Pressure Points” (2)

v Data cache
â Limited associativity can significantly degrade running time
â Miss latency affects crossover point between algorithmic alternatives

v Translation Lookaside Buffer (TLB)
â Limited number of entries can lead to thrashing

v Registers
â Register tiling can help re-order the data transfers and ameliorate the

effects of limited associativity in data cache
â Needs compiler assistance

v Array layout function
â Changing the mapping from array index space to memory address

space can benefit TLB and data cache
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Three Questions for Today’s Talk

v How can we model a multi-level memory hierarchy in a
realistic and predictive manner?

v What alternative data organizations are beneficial for multi-
level memory hierarchies?

v How well do such ideas work in practice?



UT Austin 02/28/2000 SC © 2000 13

Theoretical Models for Memory HierarchiesTheoretical Models for Memory Hierarchies
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Theoretical Memory Models
v Model 1: RAM model [Shepherdson-Sturgis 1963]

â All memory accesses have unit cost
â Performance metric: Total work

v Model 2: I/O model [Aggarwal-Vitter 1988]
â Two-level model: slow and fast memory, block transfer

• Does not model limited associativity

â Performance metric: Number of transfers between memory levels

v Model 3: Cache-oblivious model [Frigo et al. 1999]
â Does not use cache parameters in algorithm design, only in analysis

• Models fully-associative “tall” cache

â Performance metric: (Total work, memory activity)

v Model 4: Cache model [Sen-Chatterjee 2000]
â Derived starting from I/O model; models limited associativity

• Emulation theorem

â Performance metric: Total work, including memory activity
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I/O Model
External memory (slow, large)

Internal memory
(fast, small) P

B

v Model parameters
â M: size of internal memory
â B: block size for I/O transfers
â n: input size

v Computations can be performed only on elements present in internal
memory

v Fully-associative mapping between external and internal memory blocks
v Goal of algorithm design: Minimize number of I/O operations
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Cache Model
Main memory (slow, large)

Cache memory
(fast, small) P

B

v Model parameters
â M: size of cache memory
â B: block size for transfers between cache and main memory
â n: input size
â L: cache miss penalty (normalized)

v Computations can be performed only on elements present in cache
v Fixed mapping between cache blocks and memory blocks
v No explicit control on cache locations
v Goal of algorithm design: Minimize (# steps + L·#of block transfers)
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Emulation Theorem [Sen-Chatterjee 2000]

If an algorithm A in the I/O model uses T block transfers
and I processing time, then the algorithm can be executed
in the cache model in O(I+(L+B)· T) steps.  The memory
requirement is an additional M/B+2 blocks beyond that of
the algorithm in the I/O model.

A block-efficient I/O algorithm can be emulated in
O(I+L·T) steps.

If an algorithm A in the I/O model uses T block transfers
and I processing time, then the algorithm can be executed
in the cache model in O(I+(L+B)· T) steps.  The memory
requirement is an additional M/B+2 blocks beyond that of
the algorithm in the I/O model.

A block-efficient I/O algorithm can be emulated in
O(I+L·T) steps.

v Key idea behind emulation: Careful copying of data structures into an
additional buffer of size M over which we have explicit control

v Note that this causes extra memory references, but reduces the number
of misses
â In case of fast algorithm, might not be able to amortize copying cost over

multiple uses of block
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Alternative Data LayoutsAlternative Data Layouts
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Layout and Cache Behavior

•A tile is not contiguous in memory with row/column-major layout
•Multi-word line size can cause cache capacity to be exceeded
•Fixed mapping from memory to cache causes conflict misses

Cache

Direct-mapped
cache with 4 sets
and a block size
of 4 matrix elts



UT Austin 02/28/2000 SC © 2000 20

Making Tiles Contiguous

v Elements of a quadrant are
contiguous

v Recursive layout
v Elements of a tile are

contiguous
v No conflict misses in cache
v Better behavior expected in

multi-level hierarchies
â L2 cache
â TLB

Memory Cache Mapping
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Array Layout Functions

v Required characteristics
â One-to-one: Each index point (r,c) should map to a distinct location f
â Onto/Dense: “Almost each” f should correspond to some (r,c)

v Desired characteristics
â Cheap address computation
â Incremental address computation

• e.g., L(r+1,c) - n = L(r,c) = L(r,c+1) - 1 for row-major layout

v Questions for non-standard layouts
â How much does it enhance locality/performance?
â What is the overhead of address computation?
â Can addresses be computed incrementally?
â What is the cost of format conversion?
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Linear Layout Functions

v Array A with m rows and n columns
v LRM(r,c;m,n) = n·r+c
v LCM(r,c;m,n) = m·c+r
v These are canonical layouts

â A d-dimensional array has d! canonical layouts
â But language designer chooses and fixes one layout

v Canonical layouts favor one array axis, and dilate other
axes
â This can interact badly with caches and TLBs

v Can we do better with non-linear layouts?
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Non-linear Layout Functions

00 11 22 33

44 55 66 77

88 99 1010 1111

1212 1313 1414 1515

00 33 44 55

11 22 77 66

1414 1313 88 99

1515 1212 1111 1010

00 11 44 55

22 33 66 77

88 99 1212 1313

1010 1111 1414 1515

•Different locality properties
•Different inclusion properties
•Different addressing costs

4-D blocked Morton order Hilbert order
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4-D Blocked Layout
v Point (r,c) in matrix, tiles are p*q
v Map to four-dimensional space

â tile row tr
â tile column tc
â row offset or

â column offset oc

v Mapping R is nonlinear
â Integer quotient and remainder

v Lay out each tile contiguously in
some canonical order

v Order tiles lexicographically by
(tr, tc) co-ordinates

v Final layout is sum of two
components

(r, c) (tr, tc, or, oc)
R

 tile row

 tile column  row offset

 column offsetm

n

r

c
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Recursive Layouts

m

n

r

c
v Point (r,c) in matrix, tiles are p*q
v Map to four-dimensional space

â tile row tr
â tile column tc
â row offset or

â column offset oc

v Mapping R is nonlinear
â Integer quotient and remainder

v Lay out each tile contiguously in
some canonical order

v Order tiles recursively by (tr, tc)
co-ordinates
â Also called quadtree or space-

filling curve orderings

v Final layout is sum of two
components

(r, c) (tr, tc, or, oc)
R

 tile row

 tile column  row offset

 column offset
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Single-Orientation Layouts

00 11 44 55

22 33 66 77

88 99 1212 1313

1010 1111 1414 1515

Interleave Bits

B

r

B

c

B-1

S(r,c)
Z-Morton
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Quad-Orientation Layouts

00 33 44 55

11 22 77 66

1414 1313 88 99

1515 1212 1111 1010

Hilbert

State Machine

B

r

B

c

B-1

S(r,c)
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Morton Order Layout

00 11 44 55

22 33 66 77

88 99 1212 1313

1010 1111 1414 1515

int offset(int r, int c, int n, int d, int k) {
    int b = 0;
    while (d > 0) {
        n /= 2;
        d--;
        b = 4*b+(r<n?(c<n?0:1):(c<n?2:3));
        r = r<n?r:r-n;
        c = c<n?c:c-n;
    }
    return (b*k+c)*k+r;
}

int offset(int r, int c, int n, int d, int k) {
    int b = 0;
    while (d > 0) {
        n /= 2;
        d--;
        b = 4*b+(r<n?(c<n?0:1):(c<n?2:3));
        r = r<n?r:r-n;
        c = c<n?c:c-n;
    }
    return (b*k+c)*k+r;
}

v Code above computes position of element (r,c) of n*n matrix A
â d levels of subdivision
â k*k tiles, column-major layout

v This is expensive!
â Exploit incremental address calculation capability within single tile
â “Embed” address calculation into control structure of algorithm
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Appropriate Control Structures
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
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1211

 up_mm(A, B, C) {
   if (leaf_level) {
      dgemm(A,B,C); 
      return;
   }
   up_mm(A11, B11, C11);
   dn_mm(A11, B12, C12);
   up_mm(A21, B12, C22);
   dn_mm(A21, B11, C21);
   up_mm(A22, B21, C21);
   dn_mm(A22, B22, C22);
   up_mm(A12, B22, C12);
   dn_mm(A12, B21, C11);
}

 dn_mm(A, B, C) {
   if (leaf_level) {
      dgemm(A, B, C); 
      return;
   }
   dn_mm(A12, B21, C11);
   up_mm(A12, B22, C12);
   dn_mm(A22, B22, C22);
   up_mm(A22, B21, C21);
   dn_mm(A21, B11, C21);
   up_mm(A21, B12, C22);
   dn_mm(A11, B12, C12);
   up_mm(A11, B11, C11);
}
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EvaluationEvaluation
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Nonlinear Layouts: Absolute Performance
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Nonlinear Layouts: Performance Sensitivity
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…to choice of tile size for a fixed
problem size

…to variations in problem size
for a fixed tile size
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Algorithm 1: RAM Model

v Optimal algorithm
â Statements executed n·(n-1)/2 times
â Each statement costs constant number of operations
â Complexity of Θ (n2)
â Optimal up to constant factors

v Problem: Almost every loop iteration has misses
â Catastrophic conflict misses in data cache
â Thrashing in TLB

 for (i = 0; i < n; i++) {
   for (j = i+1; j < n; j++) {
     tmp = A[i][j];
     A[i][j] = A[j][i];
     A[j][i] = tmp;
   }
}

 for (i = 0; i < n; i++) {
   for (j = i+1; j < n; j++) {
     tmp = A[i][j];
     A[i][j] = A[j][i];
     A[j][i] = tmp;
   }
}
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Algorithm 2: Transposing with Merge [Floyd 1972]

0 4 8 c

1 5 9 d

2 6 a e

3 7 b f

0 4 8 c 1 5 9 d 2 6 a e 3 7 b f

0 1 4 5 8 9 c d 2 3 6 7 a b e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 4 8 c 1 5 9 d 2 6 a e 3 7 b f
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Algorithm 3: “Half-Copying”

Buffer

(1) Copy
(2) Transpose

(3) Transpose
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Algorithm 4: “Full-Copying”

Buffer1

Buffer2

(1) Copy

(2) Copy

(3) Transpose

(4) Transpose
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Algorithm 5: Cache-Oblivious

v Key idea
â Use divide-and-conquer to divide problems into smaller sub-

problems
â The sub-problems will fit in cache once they are small enough

v Cache parameters not required in algorithm design stage,
only for algorithm analysis

v Uses a different schedule of operations
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Algorithm 6: Recursive Layout

NW NE

SESW

 tr1(int src, int num)

 {
    if (num==1) {
    /* base case */
    }
    else {
      tr1(NW(src),num/4);
      tr2(NE(src),SW(src),num/4);
      tr1(SE(src),num/4);
    }

NW NE

SESWNW NE

SESW

 tr2(int src, int dst, int num)

 {
    if (num==1) {
    /* base case */
    }
    else {
      tr2(NW(src),NW(dst),num/4);
      tr2(NE(src),SW(dst),num/4);
      tr2(SW(src),NE(dst),num/4);
      tr2(SE(src),SE(dst),num/4);
    }
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Experimental Platform

v 300 MHz UltraSPARC-II
v Memory architecture

â L1 data cache: direct-mapped, 32-byte blocks, 16KB capacity
â L2 data cache: direct-mapped, 64-byte blocks, 2MB capacity
â RAM: 512MB
â VM page size: 8KB
â Data TLB: fully associative, 64 entries

v Operating system: SunOS 5.6
v Compiler: SUN’s Workshop Compilers 4.2
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Comparative Performance of Algorithms
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Memory System Behavior (n = 2048, b = 64)
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Future Directions

v Application to more problems
â Wavelet-based computations
â JPEG 2000

v Analytical modeling of memory hierarchy behavior for non-
linear layouts
â We have a solution technique

• Applied to recursive matrix multiplication
• Also works for set-associative caches

 http://www.cs.unc.edu/Research/TUNE/


