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Architecture and Technology Trends

• Increasing wire delays limit sizes of monolithic structures [Agarwal,

ISCA’00]

Need aggressive partitioning

• Clock rate growths show diminishing returns

      [Hrishikesh, ISCA’02] [Sprangle, ISCA’02]

Deeper pipelines approaching optimal limits

Need to improve instruction throughput (IPC)

• Conventional architectures and their schedulers are not equipped to

deal with these trends
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The Problem with Conventional Approaches

• VLIW approach

Relies completely on compiler to schedule code

+ Eliminates need for dynamic dependence check hardware

+ Good match for partitioning

+ Can minimize communication latencies on critical paths

– Poor tolerance to unpredictable dynamic latencies

– These latencies continue to grow

• Superscalar approach

Hardware dynamically schedules code

+ Can tolerate dynamic latencies

– Quadratic complexity of dependence check hardware

– Not a good match for partitioning

– Difficult to make good placement decisions

– ISA does not allow software to help with instruction placement
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Dissecting the Problem

• Scheduling is a two-part problem

Placement: Where an instruction executes

Issue: When an instruction executes

• VLIW represents one extreme

Static Placement and Static Issue (SPSI)

+ Static Placement works well for partitioned architectures

– Static Issue causes problems with unknown latencies

• Superscalars represent another extreme

Dynamic Placement and Dynamic Issue (DPDI)

+ Dynamic Issue tolerates unknown latencies

– Dynamic Placement is difficult in the face of partitioning
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Our Solution: EDGE Architectures

• EDGE: Explicit Dataflow Graph Execution

Supports Static Placement and Dynamic Issue (SPDI)

Renegotiates the compiler/hardware binary interface

• An EDGE ISA explicitly encodes the dataflow graph specifying targets

i1:  movi r1, #10

i2:  movi r2, #20

i3:  add r3, r2, r1

RISC

• Static Placement

Explicit DFG simplifies hardware       no HW dependency analysis!

Results are forwarded directly         no associative issue queues!

through point-to-point network       no global bypass network!

• Dynamic Instruction Issue

Instructions execute in original dataflow-order

ALU-1:  movi #10, ALU-3

ALU-2:  movi #20, ALU-3

ALU-3:  add ALU-4

EDGE

mov mov

add
ALU-3

ALU-1 ALU-2
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Static Placement and Dynamic Issue (SPDI)

• Combines strengths of static and dynamic schedulers

Static Placement (SP)

Dynamic Issue (DI)

• Benefits for the static scheduler

Precise timing information not required

Can convey placement information to the hardware

• Benefits for the dynamic scheduler

No associative tag match

Tolerates dynamic latencies

• Scheduling Goals

Spread parallelism among numerous execution resources

Minimize on-chip communication latencies
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Outline

• Architectural Overview

Execution substrate

Scheduling problem

• SPDI scheduling algorithm

Locality optimizations

Contention optimizations

• Experimental results

• Conclusions
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TRIPS Architecture

0 1 2 3

I-cache 0

I-cache 1

I-cache 2

I-cache 3D-cache/LSQ 3

D-cache/LSQ 2

D-cache/LSQ 1

D-cache/LSQ 0

Global Ctrl

Branch Predictor
I-cache H

Register banks
Execution node

Execution array

• Topology and latency of interconnect exposed to the static scheduler

• Reduced register pressure
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The Scheduling Problem

Execution Node

opcode src1 src2

opcode src1 src2

opcode src1 src2

Instruction Buffers form 

a logical “z-dimension” 

in each node

opcode src1 src2

3D scheduling problem

Control

Router

ALU

• Instruction buffers add depth to the execution array

2D array of ALUs; 3D volume of instructions
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•Program split into hyperblocks

•Hyperblocks scheduled onto the

entire 4 4 4 volume
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List Scheduling Algorithm

Determine priority order of instructions

Pick the unscheduled instruction (I)

 with highest priority

For each ALU compute cost of I

Pick ALU (Ai) with minimum cost

Schedule I at Ai

Cost[I] = max (Cost[P1]+Distance[A1,Ai],

        Cost[P2]+Distance[A2,Ai] )

+

Latency(I)

Ai

A2 A1

P1 P2

I

Hyperblock

DFG

• Local algorithm – one hyperblock at a time

• No backtracking or re-placement of instructions
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M

Scheduler Optimizations: 1 of 2

• Balance load among ALUs

Estimate ALU contention

• Locality optimization

Place loads and their

consumers close to caches

Place register reads close to

registers

Cost[I] = max (Cost[P1]+Distance[A1,Ai]

         Cost[P2]+Distance[A2,Ai])

+

Contention (Ai)

+

Latency(I)

A1

A2

Ai

P1 P2

I

Hyperblock

DFG

M

load
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Scheduler Optimizations: 2 of 2

• Lookahead optimization

Estimate future use for register outputs or loads

• Critical path re-computation

Cost[I] = max (Cost[P1]+Distance[A1,Ai]

         Cost[P2]+Distance[A2,Ai])

+

Contention (Ai)

+

Lookahead (I)

+

Latency(I)

P6

P5

P3

P4

P2 P1

P5

P4

Hyperblock

DFG

P3

P2

P1

P6
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Prototype Evaluation

• Experimental Methodology

Use Trimaran infrastructure to produce hyperblocks

Schedule instructions using a custom greedy scheduler

Evaluate performance using a detailed microarchitecture simulator

• Simulated Machine Parameters

8 8 array of ALUs, 128 instruction slots

0.5 cycle hop-hop latency

64KB, 2-way L1 Instruction and L1 Data caches

32Kbits two-level local/global tournament-style branch predictor

Optimistic assumptions: Oracular memory disambiguation, no TLBs,

centralized data cache

• Benchmarks

8 SpecInt, 8 SpecFP, 3 MediaBench
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Scheduler Results – Integer Benchmarks
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Scheduler Results – Floating Point
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Comparison with Ideal Scheduler: 1 of 2
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Ideal schedules do not have communication latencies on the critical path
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Comparison with Ideal Scheduler: 2 of 2
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Ideal schedules do not have communication latencies on the critical path
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On-Going Work

• Improving the scheduler:

Profile guided scheduler optimizations

Code-specific heuristics

• Select heuristics based on properties of the hyperblock

Minimize network contention

• Analysis shows avoidable performance loss due to network

contention

• Improving our evaluation with TRIPS-specific compiler:

Build larger hyperblocks

Aware of TRIPS-specific scheduling constraints
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Conclusions

• Scheduling has two components that can be separated

Placement and issue

• EDGE architectures enable a new scheduling model

Static Placement, Dynamic Issue

Hardware dynamically tolerates unknown latencies

Compiler gives the hardware the ILP

Simpler static instruction scheduler

• Scheduler summary

Simple algorithm with well-chosen heuristics suffices

Load balancing heuristics are important

Register and cache locality heuristics are important

Performance within 20% of an optimistic upper bound


