real function sdot(n,sx,incx,sy,incy) c c forms the dot product of two vectors. c uses unrolled loops for increments equal to one. c jack dongarra, linpack, 3/11/78. c real sx(1),sy(1),stemp integer i,incx,incy,ix,iy,m,mp1,n c stemp = 0.0e0 sdot = 0.0e0 if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments c not equal to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n stemp = stemp + sx(ix)*sy(iy) ix = ix + incx iy = iy + incy 10 continue sdot = stemp return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,5) if( m .eq. 0 ) go to 40 do 30 i = 1,m stemp = stemp + sx(i)*sy(i) 30 continue if( n .lt. 5 ) go to 60 40 mp1 = m + 1 do 50 i = mp1,n,5 stemp = stemp + sx(i)*sy(i) + sx(i + 1)*sy(i + 1) + * sx(i + 2)*sy(i + 2) + sx(i + 3)*sy(i + 3) + sx(i + 4)*sy(i + 4) 50 continue 60 sdot = stemp return end integer function isamax(n,sx,incx) c c finds the index of element having max. absolute value. c jack dongarra, linpack, 3/11/78. c modified to correct problem with negative increments, 9/29/88. c real sx(1),smax integer i,incx,ix,n c isamax = 0 if( n .lt. 1 ) return isamax = 1 if(n.eq.1)return if(incx.eq.1)go to 20 c c code for increment not equal to 1 c ix = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 smax = abs(sx(ix)) ix = ix + incx do 10 i = 2,n if(abs(sx(ix)).le.smax) go to 5 isamax = i smax = abs(sx(ix)) 5 ix = ix + incx 10 continue return c c code for increment equal to 1 c 20 smax = abs(sx(1)) do 30 i = 2,n if(abs(sx(i)).le.smax) go to 30 isamax = i smax = abs(sx(i)) 30 continue return end subroutine saxpy(n,sa,sx,incx,sy,incy) c c constant times a vector plus a vector. c uses unrolled loop for increments equal to one. c jack dongarra, linpack, 3/11/78. c real sx(1),sy(1),sa integer i,incx,incy,ix,iy,m,mp1,n c if(n.le.0)return if (sa .eq. 0.0) return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments c not equal to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n sy(iy) = sy(iy) + sa*sx(ix) ix = ix + incx iy = iy + incy 10 continue return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,4) if( m .eq. 0 ) go to 40 do 30 i = 1,m sy(i) = sy(i) + sa*sx(i) 30 continue if( n .lt. 4 ) return 40 mp1 = m + 1 do 50 i = mp1,n,4 sy(i) = sy(i) + sa*sx(i) sy(i + 1) = sy(i + 1) + sa*sx(i + 1) sy(i + 2) = sy(i + 2) + sa*sx(i + 2) sy(i + 3) = sy(i + 3) + sa*sx(i + 3) 50 continue return end subroutine scopy(n,sx,incx,sy,incy) c c copies a vector, x, to a vector, y. c uses unrolled loops for increments equal to 1. c jack dongarra, linpack, 3/11/78. c real sx(1),sy(1) integer i,incx,incy,ix,iy,m,mp1,n c if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments c not equal to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n sy(iy) = sx(ix) ix = ix + incx iy = iy + incy 10 continue return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,7) if( m .eq. 0 ) go to 40 do 30 i = 1,m sy(i) = sx(i) 30 continue if( n .lt. 7 ) return 40 mp1 = m + 1 do 50 i = mp1,n,7 sy(i) = sx(i) sy(i + 1) = sx(i + 1) sy(i + 2) = sx(i + 2) sy(i + 3) = sx(i + 3) sy(i + 4) = sx(i + 4) sy(i + 5) = sx(i + 5) sy(i + 6) = sx(i + 6) 50 continue return end real function snrm2 ( n, sx, incx) integer next real sx(1), cutlo, cuthi, hitest, sum, xmax, zero, one data zero, one /0.0e0, 1.0e0/ c c euclidean norm of the n-vector stored in sx() with storage c increment incx . c if n .le. 0 return with result = 0. c if n .ge. 1 then incx must be .ge. 1 c c c.l.lawson, 1978 jan 08 c c four phase method using two built-in constants that are c hopefully applicable to all machines. c cutlo = maximum of sqrt(u/eps) over all known machines. c cuthi = minimum of sqrt(v) over all known machines. c where c eps = smallest no. such that eps + 1. .gt. 1. c u = smallest positive no. (underflow limit) c v = largest no. (overflow limit) c c brief outline of algorithm.. c c phase 1 scans zero components. c move to phase 2 when a component is nonzero and .le. cutlo c move to phase 3 when a component is .gt. cutlo c move to phase 4 when a component is .ge. cuthi/m c where m = n for x() real and m = 2*n for complex. c c values for cutlo and cuthi.. c from the environmental parameters listed in the imsl converter c document the limiting values are as follows.. c cutlo, s.p. u/eps = 2**(-102) for honeywell. close seconds are c univac and dec at 2**(-103) c thus cutlo = 2**(-51) = 4.44089e-16 c cuthi, s.p. v = 2**127 for univac, honeywell, and dec. c thus cuthi = 2**(63.5) = 1.30438e19 c cutlo, d.p. u/eps = 2**(-67) for honeywell and dec. c thus cutlo = 2**(-33.5) = 8.23181d-11 c cuthi, d.p. same as s.p. cuthi = 1.30438d19 c data cutlo, cuthi / 8.232d-11, 1.304d19 / c data cutlo, cuthi / 4.441e-16, 1.304e19 / data cutlo, cuthi / 4.441e-16, 1.304e19 / c if(n .gt. 0) go to 10 snrm2 = zero go to 300 c 10 assign 30 to next sum = zero nn = n * incx c begin main loop i = 1 20 go to next,(30, 50, 70, 110) 30 if( abs(sx(i)) .gt. cutlo) go to 85 assign 50 to next xmax = zero c c phase 1. sum is zero c 50 if( sx(i) .eq. zero) go to 200 if( abs(sx(i)) .gt. cutlo) go to 85 c c prepare for phase 2. assign 70 to next go to 105 c c prepare for phase 4. c 100 i = j assign 110 to next sum = (sum / sx(i)) / sx(i) 105 xmax = abs(sx(i)) go to 115 c c phase 2. sum is small. c scale to avoid destructive underflow. c 70 if( abs(sx(i)) .gt. cutlo ) go to 75 c c common code for phases 2 and 4. c in phase 4 sum is large. scale to avoid overflow. c 110 if( abs(sx(i)) .le. xmax ) go to 115 sum = one + sum * (xmax / sx(i))**2 xmax = abs(sx(i)) go to 200 c 115 sum = sum + (sx(i)/xmax)**2 go to 200 c c c prepare for phase 3. c 75 sum = (sum * xmax) * xmax c c c for real or d.p. set hitest = cuthi/n c for complex set hitest = cuthi/(2*n) c 85 hitest = cuthi/float( n ) c c phase 3. sum is mid-range. no scaling. c do 95 j =i,nn,incx if(abs(sx(j)) .ge. hitest) go to 100 95 sum = sum + sx(j)**2 snrm2 = sqrt( sum ) go to 300 c 200 continue i = i + incx if ( i .le. nn ) go to 20 c c end of main loop. c c compute square root and adjust for scaling. c snrm2 = xmax * sqrt(sum) 300 continue return end subroutine sscal(n,sa,sx,incx) c c scales a vector by a constant. c uses unrolled loops for increment equal to 1. c jack dongarra, linpack, 3/11/78. c real sa,sx(1) integer i,incx,m,mp1,n,nincx c if(n.le.0)return if(incx.eq.1)go to 20 c c code for increment not equal to 1 c nincx = n*incx do 10 i = 1,nincx,incx sx(i) = sa*sx(i) 10 continue return c c code for increment equal to 1 c c c clean-up loop c 20 m = mod(n,5) if( m .eq. 0 ) go to 40 do 30 i = 1,m sx(i) = sa*sx(i) 30 continue if( n .lt. 5 ) return 40 mp1 = m + 1 do 50 i = mp1,n,5 sx(i) = sa*sx(i) sx(i + 1) = sa*sx(i + 1) sx(i + 2) = sa*sx(i + 2) sx(i + 3) = sa*sx(i + 3) sx(i + 4) = sa*sx(i + 4) 50 continue return end subroutine sswap (n,sx,incx,sy,incy) c c interchanges two vectors. c uses unrolled loops for increments equal to 1. c jack dongarra, linpack, 3/11/78. c real sx(1),sy(1),stemp integer i,incx,incy,ix,iy,m,mp1,n c if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments not equal c to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n stemp = sx(ix) sx(ix) = sy(iy) sy(iy) = stemp ix = ix + incx iy = iy + incy 10 continue return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,3) if( m .eq. 0 ) go to 40 do 30 i = 1,m stemp = sx(i) sx(i) = sy(i) sy(i) = stemp 30 continue if( n .lt. 3 ) return 40 mp1 = m + 1 do 50 i = mp1,n,3 stemp = sx(i) sx(i) = sy(i) sy(i) = stemp stemp = sx(i + 1) sx(i + 1) = sy(i + 1) sy(i + 1) = stemp stemp = sx(i + 2) sx(i + 2) = sy(i + 2) sy(i + 2) = stemp 50 continue return end