M 340L - CS

Homework Set 8 Solutions

1. For a fixed value of k, let $L_{k}=\left[\begin{array}{cccccc}1 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 & 0 & 0 \\ 0 & \cdots & l_{k+1, k} & 1 & 0 & 0 \\ \vdots & \cdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & l_{n, k} & 0 & \cdots & 1\end{array}\right]$. To be precise the i, j component of L_{k} is 0 except
(1). if $i=j$ the component is 1 (i.e. this is the diagonal)
and
(2). if $i=k+1, \ldots, n$ and $j=k$ the component is $l_{i, k}$ which may be non-zero (this is below the diagonal in the $k^{\text {th }}$ column).
a. The effect of multiplying L_{k} times a vector x is to add $l_{i, k}$ times x_{k} to x_{i} for $i=k+1$, ..., n.
b. The effect of multiplying L_{k} times a matrix A is to add $l_{i, k}$ times row k to row i for $i=k+1, \ldots, n$.
c. The inverse of $L_{k}, L_{k}^{-1}=\left[\begin{array}{cccccc}1 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 & 0 & 0 \\ 0 & \cdots & -l_{k+1, k} & 1 & 0 & 0 \\ \vdots & \cdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -l_{n, k} & 0 & \cdots & 1\end{array}\right]$.
d. Let $c=\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ l_{k+1, k} \\ \vdots \\ l_{n, k}\end{array}\right]$ thus 0 's are in the first k. positions. Let $\boldsymbol{e}_{k}^{T}=\left[\begin{array}{lllllll}0 & \cdots & 0 & 1 & 0 & \cdots & 0\end{array}\right]$,
a row vector with all zeros except for a 1 in position k. What is the matrix $I+c e_{k}^{T}$?
(Remember a column times a row is an outer product and results in a matrix.)
The matrix $I+c e_{k}^{T}=L_{k}$.
2. Let $P_{i j}$ be the identity matrix with rows i and j swapped. To be precise the p, q component of $P_{i j}$ is 0 except
(1). if $p=q$ but are not equal to i or j the component is 1 (i.e. the diagonal)
and
(2). The i, j and the j, i components are 1.
a. The effect of multiplying $P_{i j}$ times a vector x is to swap components i and j.
b. The effect of multiplying $P_{i j}$ times a matrix A is to swap rows i and j.
c. The inverse of $P_{i j}, P_{i j}^{-1}$ is $P_{i j}$.
3. Rank One Changes to I. An outer product $u v^{T}$ for column vector u and row vector v^{T} is sometimes called a rank one matrix since there is only one linearly independent column (and one linearly independent row). By adding this to the identity matrix, thus forming $I+u v^{T}$, some interesting things happen. We call a matrix of the form $I+u v^{T}$ a rank one change to I.

You never actually compute the matrix $I+u v^{T}$: that's a waste of time and storage. To see this answer these questions:
a. Knowing that a matrix is a rank one change to I, (i.e. is $I+u v^{T}$, for a given u and v) what do you need to store?

Only u and v are stored.
b. Given a vector x, how would you actually compute $\left(I+u v^{T}\right) x$? I am asking for an algebraic expression here that equals $\left(I+u v^{T}\right) x$ but looks much more efficient. (Hint: remember the associativity of matrix products and that scalars are easy to multiply.)

$$
\left(I+u v^{T}\right) x \text { is computed as } x+\left(v^{T} x\right) u .
$$

c. Using part b. and assuming both u and v^{T} are n-vectors, how many multiplications and additions are required to compute $\left(I+u v^{T}\right) x$?

This requires approximately $2 n$ multiplications and $2 n$ additions.
d. For this part only, assume that $v^{T}=e_{k}^{T}$ (from problem 1d). How many multiplications and additions are required to compute $\left(I+u e_{k}^{T}\right) x$?

This requires approximately n multiplications and n additions since no inner product is done..
d. Find the inverse of $I+u v^{T}$. (Giant Hint: Try something of the form $I+\alpha u v^{T}$ for a properly defined α. Remember the inverse of any invertible matrix A satisfies $A A^{-1}=I$. That should help you find α.)

$$
\begin{aligned}
& \text { We have } I=\left(I+u v^{T}\right)\left(I+\alpha u v^{T}\right)=I+u v^{T}+\alpha u v^{T}+u v^{T} \alpha u v^{T}=I+\left(1+\alpha+\alpha v^{T} u\right) u v^{T} \text { so } \\
& 0=1+\alpha+\alpha v^{T} u \text { thus } \alpha=\frac{-1}{1+v^{T} u} .
\end{aligned}
$$

e. Having done that, can you give some condition on u and v^{T} such that there is no inverse?

An inverse exists if and only if $v^{T} u \neq-1$.
4. Answer true or false to the following. Assume all matrices are $n \times n$. If false offer a counterexample.
a. If there is an $n \times n$ matrix D such that $A D=I$, then $D A=I$.

True. If $A D=I$, then $D=A^{-1}$ and $D A=A^{-1} A=I$.
b. If the linear transformation $x \mapsto A x$ maps \mathbb{R}^{n} into \mathbb{R}^{n}, then A is non-singular.

False. The transformation $x \mapsto 0 x$ maps \mathbb{R}^{1} into \mathbb{R}^{1}, but $A=0$ is singular.
c. If the columns of A are linearly independent, then the columns of A span \mathbb{R}^{n}.

True. According to the "17 equivalencies of nonsingularity" if the columns of A are linearly independent the column space of A is \mathbb{R}^{n}.
d. If the equation $A x=b$ has at least one solution for each b in \mathbb{R}^{n}, then the transformation $x \mapsto A x$ is not one-to-one.

False. The equation $x=b$ has at least one solution for each b in \mathbb{R}^{n}, but the transformation $x \mapsto x$ is one-to-one
e. If there is a b in \mathbb{R}^{n} such that the equation $A x=b$ is consistent, then the solution is unique.

False. The 1×1 equation $0 x=0$ is consistent but has solutions $x=0$ and $x=1$.
5. When is a square lower triangular matrix invertible?

A square lower triangular matrix invertible if and only if all diagonal components are nonzero.
6. If an $n \times n$ matrix A is invertible, then the columns of A^{T} are linearly independent. Explain why.

According to the " 17 equivalencies of nonsingularity" if A is invertible then A^{T} is also invertible and thus has linearly independent columns. (Alternatively, if A is invertible then it has linearly independent rows, but these rows are the columns of A^{T}, so A^{T} has linearly independent columns.
7. Can a square matrix with two identical rows be invertible? Why or why not?

If two rows are identical then they are linearly dependent thus the matrix is not invertible.
8. If A is a 5×5 matrix and the equation $A x=b$ is consistent for every b in \mathbb{R}^{5}; is it possible that for some b, the equation $A x=b$ has more than one solution? Why or why not?

If A is a square matrix and the equation $A x=b$ is consistent for every b then the matrix is invertible and according to the " 17 equivalencies of nonsingularity" the solution is unique.
9. If $n \times n$ matrices E and F have the property that $E F=I$; then E and F commute (i.e., . $E F=F E)$. Explain why.

If square matrices E and F have the property that $E F=I$ then $E=F^{-1}$ and $E F=I=F F^{-1}=F E$, so E and F commute.
10. Let A and B be $n \times n$ matrices. Show that if $A B$ is invertible, so is B.

Suppose that B is not invertible, then for some $x \neq 0, B x=0$, but then $A B x=0$ which contradicts the fact that $A B$ is invertible. Thus, B is invertible.
11. Suppose a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ has the property that $T(u)=T(v)$ for some pair of distinct vectors u and v in \mathbb{R}^{n}. Can T map \mathbb{R}^{n} onto \mathbb{R}^{n} ? Why or why not?

According to the " 17 equivalencies of nonsingularity" if the transformation is not one-toone then the linear system $T(x)=b$ has no solution x for some choice of b. Thus, T does not map \mathbb{R}^{n} onto \mathbb{R}^{n}.

