M 340L – CS Homework Set 8 Solutions

1. For a fixed value of k, let $L_k = \begin{bmatrix} 1 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 & 0 & 0 \\ 0 & \cdots & l_{k+1,k} & 1 & 0 & 0 \\ \vdots & \cdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & l_{n,k} & 0 & \cdots & 1 \end{bmatrix}$. To be precise the *i,j* component of

L_k is 0 except

(1). if i = j the component is 1 (i.e. this is the diagonal) and

(2). if i = k+1,...,n and j = k the component is $l_{i,k}$ which may be non-zero (this is below the diagonal in the k^{tb} column).

a. The effect of multiplying L_k times a vector x is to add $l_{i,k}$ times x_k to x_i for i=k+1, ..., n.

b. The effect of multiplying L_k times a matrix A is to add $l_{i,k}$ times row k to row i for $i=k+1, \ldots, n$.

c. The inverse of
$$L_k$$
, $L_k^{-1} = \begin{bmatrix} 1 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 & 0 & 0 \\ 0 & \cdots & -l_{k+1,k} & 1 & 0 & 0 \\ \vdots & \cdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -l_{n,k} & 0 & \cdots & 1 \end{bmatrix}$.
d. Let $\iota = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ l_{k+1,k} \\ \vdots \\ l_{n,k} \end{bmatrix}$ thus 0's are in the first k positions. Let $e_k^T = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$,

a row vector with all zeros except for a 1 in position k. What is the matrix $I + ce_k^T$? (Remember a column times a row is an outer product and results in a matrix.)

The matrix $I + ce_k^T = L_k$.

2. Let P_{ij} be the identity matrix with rows *i* and *j* swapped. To be precise the *p*,*q* component of P_{ij} is 0 except

(1). if p = q but are **not** equal to *i* or *j* the component is 1 (i.e. the diagonal) and
(2). The *i,j* and the *j,i* components are 1.

a. The effect of multiplying P_{ii} times a vector x is to swap components i and j.

b. The effect of multiplying P_{ii} times a matrix A is to swap rows *i* and *j*.

c. The inverse of P_{ii} , P_{ii}^{-1} is P_{ii} .

3. **Rank One Changes to** *I*. An outer product uv^T for column vector *u* and row vector v^T is sometimes called a *rank one matrix* since there is only one linearly independent column (and one linearly independent row). By adding this to the identity matrix, thus forming $I + uv^T$, some interesting things happen. We call a matrix of the form $I + uv^T$ a *rank one change to I*.

You never actually compute the matrix $I + uv^{T}$: that's a waste of time and storage. To see this answer these questions:

a. Knowing that a matrix is a rank one change to *I*, (i.e. is $I + uv^T$, for a given *u* and *v*) what do you need to store?

Only *u* and *v* are stored.

b. Given a vector x, how would you actually compute $(I + uv^T)x$? I am asking for an algebraic expression here that equals $(I + uv^T)x$ but looks much more efficient. (Hint: remember the associativity of matrix products and that scalars are easy to multiply.)

 $(I+uv^T)x$ is computed as $x+(v^Tx)u$.

c. Using part b. and assuming both u and v^{T} are *n*-vectors, how many multiplications and additions are required to compute $(I + uv^{T})x$?

This requires approximately 2n multiplications and 2n additions.

d. For this part only, assume that $v^T = e_k^T$ (from problem 1d). How many multiplications and additions are required to compute $(I + ue_k^T)x$?

This requires approximately n multiplications and n additions since no inner product is done..

d. Find the inverse of $I + uv^{T}$. (**Giant Hint**: Try something of the form $I + \alpha uv^{T}$ for a properly defined α . Remember the inverse of any invertible matrix A satisfies $AA^{-1} = I$. That should help you find α .)

We have
$$I = (I + uv^T)(I + \alpha uv^T) = I + uv^T + \alpha uv^T + uv^T \alpha uv^T = I + (1 + \alpha + \alpha v^T u)uv^T$$
 so
 $0 = 1 + \alpha + \alpha v^T u$ thus $\alpha = \frac{-1}{1 + v^T u}$.

e. Having done that, can you give some condition on u and v^T such that there is no inverse?

An inverse exists if and only if $v^T u \neq -1$.

4. Answer true or false to the following. Assume all matrices are $n \times n$. If false offer a counterexample.

a. If there is an $n \times n$ matrix D such that AD = I, then DA = I.

True. If
$$AD = I$$
, then $D = A^{-1}$ and $DA = A^{-1}A = I$.

b. If the linear transformation $x \mapsto Ax$ maps \mathbb{R}^n into \mathbb{R}^n , then A is non-singular.

False. The transformation $x \mapsto 0x$ maps \mathbb{R}^1 into \mathbb{R}^1 , but A = 0 is singular.

c. If the columns of A are linearly independent, then the columns of A span \mathbb{R}^n .

True. According to the "17 equivalencies of nonsingularity" if the columns of A are linearly independent the column space of A is \mathbb{R}^n .

d. If the equation Ax = b has at least one solution for each b in \mathbb{R}^n , then the transformation $x \mapsto Ax$ is not one-to-one.

False. The equation x = b has at least one solution for each b in \mathbb{R}^n , but the transformation $x \mapsto x$ is one-to-one

e. If there is a *b* in \mathbb{R}^n such that the equation Ax = b is consistent, then the solution is unique.

False. The 1×1 equation 0x = 0 is consistent but has solutions x = 0 and x = 1.

5. When is a square lower triangular matrix invertible?

A square lower triangular matrix invertible if and only if all diagonal components are non-zero.

6. If an $n \times n$ matrix A is invertible, then the columns of A^T are linearly independent. Explain why.

According to the "17 equivalencies of nonsingularity" if A is invertible then A^{T} is also invertible and thus has linearly independent columns. (Alternatively, if A is invertible then it has linearly independent rows, but these rows are the columns of A^{T} , so A^{T} has linearly independent columns.

7. Can a square matrix with two identical rows be invertible? Why or why not?

If two rows are identical then they are linearly dependent thus the matrix is not invertible.

8. If A is a 5×5 matrix and the equation Ax = b is consistent for every b in \mathbb{R}^5 ; is it possible that for some b, the equation Ax = b has more than one solution? Why or why not?

If A is a square matrix and the equation Ax = b is consistent for every b then the matrix is invertible and according to the "17 equivalencies of nonsingularity" the solution is unique.

9. If $n \times n$ matrices E and F have the property that EF = I; then E and F commute (i.e., EF = FE). Explain why.

If square matrices E and F have the property that EF = I then $E = F^{-1}$ and $EF = I = FF^{-1} = FE$, so E and F commute.

10. Let A and B be $n \times n$ matrices. Show that if AB is invertible, so is B.

Suppose that *B* is not invertible, then for some $x \neq 0$, Bx = 0, but then ABx = 0 which contradicts the fact that *AB* is invertible. Thus, *B* is invertible.

11. Suppose a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ has the property that T(u) = T(v) for some pair of distinct vectors u and v in \mathbb{R}^n . Can T map \mathbb{R}^n onto \mathbb{R}^n ? Why or why not?

According to the "17 equivalencies of nonsingularity" if the transformation is not one-toone then the linear system T(x) = b has no solution x for some choice of b. Thus, T does *not* map \mathbb{R}^n onto \mathbb{R}^n .