M 340L-CS

Homework Set 11 Solutions

1. Calculate the determinants of

$$
\begin{aligned}
& \text { a. }\left[\begin{array}{cc}
3 & 6 \\
-1 & 4
\end{array}\right], \operatorname{det}\left(\left[\begin{array}{cc}
3 & 6 \\
-1 & 4
\end{array}\right]\right)=3 \cdot 4-6 \cdot(-1)=18 \\
& \text { b. } \begin{aligned}
{\left[\begin{array}{ccc}
2 & 2 & 4 \\
-2 & 0 & 3 \\
4 & 3 & -1
\end{array}\right] } & , \operatorname{det}\left(\left[\begin{array}{ccc}
2 & 2 & 4 \\
-2 & 0 & 3 \\
4 & 3 & -1
\end{array}\right]\right) \\
& =2 \cdot 0 \cdot(-1)-2 \cdot 3 \cdot 3-(-2) \cdot 2 \cdot(-1)+(-2) \cdot 3 \cdot 4+4 \cdot 2 \cdot 3-4 \cdot 0 \cdot 4=-22 .
\end{aligned}
\end{aligned}
$$

2. The expansion of a 3×3 determinant can be remembered by the following device. Add a copy of the first two columns to the right of the matrix, and compute the determinant adding the products along the northwest-to-southeast diagonals and subtracting the products along the northeast-tosouthwest diagonals:

Use this method to compute the determinants:

$$
\text { a. } \begin{aligned}
{\left[\begin{array}{ccc}
0 & 5 & 1 \\
4 & -3 & 0 \\
2 & 4 & 1
\end{array}\right] } & , \operatorname{det}\left(\left[\begin{array}{ccc}
0 & 5 & 1 \\
4 & -3 & 0 \\
2 & 4 & 1
\end{array}\right]\right) \\
& =0 \cdot(-3) \cdot 1+5 \cdot 0 \cdot 2+1 \cdot 4 \cdot 4-1 \cdot(-3) \cdot 2-0 \cdot 0 \cdot 4-5 \cdot 4 \cdot 1=2
\end{aligned}
$$

b. $\begin{aligned} {\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 1 & 1 \\ 3 & 4 & 2\end{array}\right], } & \operatorname{det}\left(\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 1 & 1 \\ 3 & 4 & 2\end{array}\right]\right) \\ & =1 \cdot 1 \cdot 2+3 \cdot 1 \cdot 3+5 \cdot 2 \cdot 4-5 \cdot 1 \cdot 3-1 \cdot 1 \cdot 4-3 \cdot 2 \cdot 2=20 .\end{aligned}$
3. Prove that for an invertible matrix $A, \operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$. (Hint: Remember $A A^{-1}=I$.)

$$
1=\operatorname{det}(I)=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(A) \cdot \operatorname{det}\left(A^{-1}\right), \text { so } \operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)
$$

4. Answer true or false to the following. If false offer a counterexample.
a. If the columns of A are linearly dependent, then $\operatorname{det}(A)=0$.

True. If the columns of A are linearly dependent, then A is singular and $\operatorname{det}(A)=0$.
b. $\operatorname{det}(A+B)=\operatorname{det}(A) \operatorname{det}(B)$.

False. Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ then
$\operatorname{det}(A+B)=\operatorname{det}\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)=1 \neq 0=0 \cdot 0=\operatorname{det}(A) \operatorname{det}(B)$.
c. If two row interchanges are made in succession, then the new determinant equals the old determinant.

True. Let $B=P_{1} P_{2} A$, where P_{1} and P_{2} are actual swaps. Since $\operatorname{det}\left(P_{1}\right)=\operatorname{det}\left(P_{2}\right)=-1$, $\operatorname{det}(B)=\operatorname{det}\left(P_{1} P_{2} A\right)=\operatorname{det}\left(P_{1}\right) \operatorname{det}\left(P_{2}\right) \operatorname{det}(A)=(-1)(-1) \operatorname{det}(A)=\operatorname{det}(A)$.
d. The determinant of A is the product of the diagonal entries in A.

False. Let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, then $\operatorname{det}(A)=-1 \neq 0 \cdot 0$.
e. If $\operatorname{det}(A)$ is zero, then two rows or two columns are the same, or a row or a column is zero.

False. Let $A=\left[\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right]$, then $\operatorname{det}(A)=0$ but no two rows nor two columns are the same, nor is a row or a column zero.
5. Answer true or false to the following. If false offer a counterexample.
a. If $A x=\lambda x$ for some scalar λ, then x is an eigenvector of A.

False. Let $A=[1], x=[0]$ then $A x=0=0 \cdot 0=0 x$ but $x=[0]$ is not an eigenvector of A.
b. If $v 1$ and $v 2$ are linearly independent eigenvectors, then they correspond to distinct eigenvalues.

False. Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], v 1=\left[\begin{array}{l}1 \\ 0\end{array}\right], v 2=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ then $A v 1=1 v 1$ and $A v 2=1 v 2$, so both $v 1$ and $v 2$ are linearly independent eigenvectors with the common eigenvalue 1 .
c. The eigenvalues of a matrix are on its main diagonal.

False. Let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $v 1=\left[\begin{array}{l}1 \\ 1\end{array}\right], v 2=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ then $A v 1=1 v 1$ and $A v 2=-1 v 2$, so the eigenvalues are 1 and -1 , neither ow which is on the diagonal.

