Refraction as Minimization

This problem deals with the direction of a light ray (or a ray of any other wave phenomenon) as it passes through a boundary from a material with one speed of transmission into a second material with a different speed of transmission. The principle that governs the direction of the ray's change of direction as it crosses the boundary is Fermat's principle. The original statement of Fermat's principle was, "The actual path between two points taken by a beam of light is the one which is traversed in the least time."

Consider the situation to the right in which a layer with transmission speed c_{1} is beneath a layer with transmission speed c_{2}. The distance from $(0,0)$ to $(x, 1)$ is $\sqrt{1+x^{2}}$ thus the time for the beam of light to travel the distance is $\sqrt{1+x^{2}} / c_{1}$. The distance from $(1, x)$ to $(1,1)$ is $\sqrt{1+(1-x)^{2}}$ thus the time for the beam of light to travel the distance is $\sqrt{1+(1-x)^{2}} / c_{2}$ and the total transit time is
 $\sqrt{1+x^{2}} / c_{1}+\sqrt{1+(1-x)^{2}} / c_{2}=\left(\sqrt{1+x^{2}}{ }_{1}+r \sqrt{1+(1-x)^{2}}\right) / c_{1}$
, where r is just the ratio c_{1} / c_{2}. In units of inverse c_{1} the transit time is $\sqrt{1+x^{2}}{ }_{1}+r \sqrt{1+(1-x)^{2}}$, and this will suffice for our purposes here since the units are relevant.

1. Construct a MATLAB function transtime that has inputs \mathbf{X} and \mathbf{r} and returns the time the ray requires to transit from $(0,0)$ to $(1,2)$.
2. Let \mathbf{r} be an array of 101 linearly spaced points from 1 to 10 . For each element of the array, use fminbnd to compute a minimum of transtime to get the optimal positions \mathbf{X}. This results in an array \mathbf{X} as a function of the refraction index \mathbf{r}. Plot \mathbf{X} versus \boldsymbol{r} (i.e., the dependent variable is \mathbf{X}).
3. Consider the angle of incidence θ_{1} and angle of refraction θ_{2}. Recognize that $\sin \theta_{1}=\frac{x}{\sqrt{1+x^{2}}}$ and $\sin \theta_{2}=\frac{1-x}{\sqrt{1+(1-x)^{2}}}$. Compute arrays sintheta1 and

sintheta2 from x. Create a plot of sintheta1./sintheta2 versus r. You should be able to conclude Snell's Law from this.
