Refraction as Minimization Solution

Consider the situation in which a layer with transmission speed c_{1} is beneath a layer with transmission speed c_{2}. The distance from $(0,0)$ to $(x, 1)$ is $\sqrt{1+x^{2}}$ thus the time for the beam of light to travel the distance is $\sqrt{1+x^{2}} / c_{1}$. The distance from $(1, x)$ to $(1,1)$ is $\sqrt{1+(1-x)^{2}}$ thus the time for the beam of light to travel the distance is $\sqrt{1+(1-x)^{2}} / c_{2}$ and the total transit time is $\sqrt{1+x^{2}} / c_{1}+\sqrt{1+(1-x)^{2}} / c_{2}=\left(\sqrt{1+x^{2}}{ }_{1}+r \sqrt{1+(1-x)^{2}}\right) / c_{1}$, where r is just the ratio c_{1} / c_{2}. In units of inverse c_{1} the transit time is $\sqrt{1+x^{2}}{ }_{1}+r \sqrt{1+(1-x)^{2}}$, and this will suffice for our purposes here since the units are relevant.

1. Construct a MATLAB function transtime that has inputs \mathbf{X} and \mathbf{r} and returns the time the ray requires to transit from $(0,0)$ to $(1,2)$.
```
function y = transtime (x, r)
y = sqrt(1+\mp@subsup{x}{}{\wedge}2)+r*sqrt(1+(1-x)^2);
```

2. Let \mathbf{r} be an array of 101 linearly spaced points from 1 to 10 . For each element of the array, use fminbnd to compute a minimum of transtime to get the optimal positions x. This results in an array \mathbf{X} as a function of the refraction index \mathbf{r}. Plot \mathbf{X} versus \mathbf{r} (i.e., the dependent variable is \mathbf{X}).
```
r = linspace (1, 10, 101);
for k = 1:101
    x(k) = fminbnd ('transtime', 0, 1, optimset, r(k));
end
plot (r, x)
```

3. Consider the angle of incidence θ_{1} and angle of refraction θ_{2}. Recognize that $\sin \theta_{1}=\frac{x}{\sqrt{1+x^{2}}}$ and $\sin \theta_{2}=\frac{1-x}{\sqrt{1+(1-x)^{2}}}$. Compute arrays sintheta1 and sintheta2 from x. Create a plot of sintheta1./sintheta2 versus r. You should be able to conclude Snell's Law from this.
```
sintheta1 = x./sqrt(1+x.^2);
sintheta2 = (1-x)./sqrt(1+(1-x).^2);
plot (r, sintheta1./sintheta2)
```

