Refraction as Minimization Solution

Consider the situation in which a layer with transmission speed c_1 is beneath a layer with transmission speed c_2 . The distance from (0,0) to (x,1) is $\sqrt{1+x^2}$ thus the time for the beam of light to travel the distance is $\sqrt{1+x^2}/c_1$. The distance from (1,x) to (1,1) is $\sqrt{1+(1-x)^2}$ thus the time for the beam of light to travel the distance is $\sqrt{1+(1-x)^2}/c_2$ and the total transit time is $\sqrt{1+x^2}/c_1 + \sqrt{1+(1-x)^2}/c_2 = (\sqrt{1+x^2}+r\sqrt{1+(1-x)^2})/c_1$, where r is just the ratio c_1/c_2 . In units of inverse c_1 the transit time is $\sqrt{1+x^2}+r\sqrt{1+(1-x)^2}$, and this will suffice for our purposes here since the units are relevant.

1. Construct a MATLAB function **transtime** that has inputs \mathbf{x} and \mathbf{r} and returns the time the ray requires to transit from (0,0) to (1,2).

function y = transtime (x, r) y = $sqrt(1+x^2)+r*sqrt(1+(1-x)^2);$

2. Let \mathbf{r} be an array of 101 linearly spaced points from 1 to 10. For each element of the array, use fminbnd to compute a minimum of transtime to get the optimal positions \mathbf{x} . This results in an array \mathbf{x} as a function of the refraction index \mathbf{r} . Plot \mathbf{x} versus \mathbf{r} (i.e., the dependent variable is \mathbf{x}).

```
r = linspace (1, 10, 101);
for k = 1:101
x(k) = fminbnd ('transtime', 0, 1, optimset, r(k));
end
plot (r, x)
```

3. Consider the angle of incidence θ_1 and angle of refraction θ_2 . Recognize that $\sin \theta_1 = \frac{x}{\sqrt{1+x^2}}$ and

 $\sin \theta_2 = \frac{1-x}{\sqrt{1+(1-x)^2}}$. Compute arrays sintheta1 and sintheta2 from x. Create a plot of

sintheta1./sintheta2 versus r. You should be able to conclude Snell's Law from this.

sintheta1 = $x./sqrt(1+x.^2)$; sintheta2 = $(1-x)./sqrt(1+(1-x).^2)$; plot (r, sintheta1./sintheta2)