A Simple Matlab Programming Assignment Solutions

Write a Matlab function exp_fraction to these specifications:

Input:	\propto threshold	an array (assumed to have at least one entry) a real value.
Output:	Þ	the fraction of the components x_i of x satisfying
		$e^{x_i} \geq threshold$.
Solution 1:		
function p = e %	xp_fraction (x, th	nreshold)
%Input: x % %	an ar threshold	ray (assumed to have at least one entry) a real value.
%Output: % % n = 0:	р	the fraction of the components of x satisfying exp(x(i)) >= threshold
for i = 1: lengt if (exp n = n- end end	h(x) b(x(i)) >= thresho +1;	old)
p = n/lengtn(x));	
501011011 2;	5 11 7 11	
function p = e	xp_traction (x, tr	nresnola)
% (same o %	comments as ab	ove)
p = sum (exp(x) >= threshold)	/length(x);
Solution 3:		
function p = e %	xp_fraction (x, th	nreshold)
%Input: x % %	an ar threshold	ray (assumed to have at least one entry) a real value (default value is zero).
%Output: % %	р	the fraction of the components of x satisfying exp(x(i)) >= threshold
if (nargin == 1 t = 0; else)	
t = thr p = sum (exp(reshold; (x) >= t)/length(x);