A Spring/Damper Suspension ODE Problem Due Friday, December 6 by 12 noon

(From Recktenwald Problem 26, pp732-3)

The following is a simplified model of the suspension system of one wheel of an automobile.

The input to the system is the time-varying displacement $y_0(t)$ corresponding to changes in the terrain. The shock absorber is characterized by its spring rate k_2 and damping coefficient c_2 . Damping in the tire is neglected. (There is no c_1 term.)

Applying Newton's law of motion and force balances to the wheel and vehicle chassis yields the following system of equations:

$$m_1 y_1''(t) + c_2(y_1'(t) - y_2'(t)) + k_2(y_1(t) - y_2(t)) + k_1 y_1(t) = k_1 y_0(t),$$

$$m_2 y_2''(t) - c_2(y_1'(t) - y_2'(t)) - k_2(y_1(t) - y_2(t)) = 0.$$

- (a) Convert these two second-order equations into an equivalent system of first-order equations. (How many first-order equations are required?). Write a **Matlab** function yp = spring(t, y, m, k, c) that takes as input the time t, a column array y, and the constants m, k, and c (as arrays). Imbed the forcing function $y_0(t) = 0.05 \sin(3\pi t)$.
- (b) Use **Matlab** function **ode45** integration routine to solve this system on the time interval [0,5] for $m_1 = 110kg$, $k_1 = 136N/m$, $m_2 = 1900kg$, $k_2 = 16N/m$, and $c_2 = 176Ns/m$. Assume the system is at rest at t = 0 (i.e., $y_1(0) = 0$, $y_2(0) = 0$, $y_1'(0) = 0$, and $y_2'(0) = 0$). Produce a plot that shows both y_1 and y_2 versus t.
- (c) Repeat the solution with c_2 reduced by a factor of 5.