A Spring/Damper Suspension ODE Problem
 Due Friday, December 6 by 12 noon

(From Recktenwald Problem 26, pp732-3)

The following is a simplified model of the suspension system of one wheel of an automobile.

The input to the system is the time-varying displacement $y_{0}(t)$ corresponding to changes in the terrain. The shock absorber is characterized by its spring rate k_{2} and damping coefficient c_{2}. Damping in the tire is neglected. (There is no c_{1} term.)

Applying Newton's law of motion and force balances to the wheel and vehicle chassis yields the following system of equations:

$$
\begin{gathered}
m_{1} y_{1}^{\prime \prime}(t)+c_{2}\left(y_{1}^{\prime}(t)-y_{2}^{\prime}(t)\right)+k_{2}\left(y_{1}(t)-y_{2}(t)\right)+k_{1} y_{1}(t)=k_{1} y_{0}(t), \\
m_{2} y_{2}^{\prime \prime}(t)-c_{2}\left(y_{1}^{\prime}(t)-y_{2}^{\prime}(t)\right)-k_{2}\left(y_{1}(t)-y_{2}(t)\right)=0 .
\end{gathered}
$$

(a) Convert these two second-order equations into an equivalent system of first-order equations. (How many first-order equations are required?). Write a Matlab function $\mathrm{yp}=$ spring $(\mathrm{t}, \mathrm{y}, \mathrm{m}, \mathrm{k}, \mathrm{c})$ that takes as input the time t , a column array y , and the constants m, k, and c (as arrays). Imbed the forcing function $y_{0}(t)=0.05 \sin (3 \pi t)$.

$$
\begin{aligned}
& \text { We construct the new array } y=\left[\begin{array}{c}
y_{1}^{\text {old }} \\
y_{2}^{\text {old }} \\
y_{1}^{\text {old }} \\
y_{2}^{\prime \prime l d}
\end{array}\right] \text { so } \\
& y^{\prime}=\left[\begin{array}{c}
y_{3} \\
y_{4} \\
\left(k_{1} y_{0}(t)-c_{2}\left(y_{1}^{\prime}(t)-y_{2}^{\prime}(t)\right)-k_{2}\left(y_{1}(t)-y_{2}(t)\right)-k_{1} y_{1}(t)\right) / m_{1} \\
\left(c_{2}\left(y_{1}^{\prime}(t)-y_{2}^{\prime}(t)\right)+k_{2}\left(y_{1}(t)-y_{2}(t)\right)\right) / m_{2}
\end{array}\right] \text { and this }
\end{aligned}
$$

is implemented in the Matlab function:

```
function yp = spring (t, y, m, k, c)
yp = zeros(4,1);
yp(1) = y(3);
yp(2) = y(4);
yp(3)=(.05**in(3*pi*t)-c(2)*(y(3)-y(4))-k(2)*(y(1)-y(2))-k(1)*y(1))/m(1);
yp(4) = (c(2)*(y(3)-y(4))+k(2)*(y(1)-y(2)))/m(2);
```

(b) Use Matlab function ode45 integration routine to solve this system on the time interval [0,5] for $m_{1}=110 \mathrm{~kg}, k_{1}=136 \mathrm{~N} / \mathrm{m}, m_{2}=1900 \mathrm{~kg}, k_{2}=16 \mathrm{~N} / \mathrm{m}$, and $c_{2}=176 \mathrm{Ns} / \mathrm{m}$. Assume the system is at rest at $t=0$ (i.e.,
$y_{1}(0)=0, y_{2}(0)=0, y_{1}^{\prime}(0)=0$, and $\left.y_{2}^{\prime}(0)=0\right)$. Produce a plot that shows both y_{1} and y_{2} versus t.

```
m = [110; 1900];
k = [136; 16];
c = [0; 176];
[t, y] = ode45 (@spring, [0 5], y0, [], m, k, c);
plot (t, y(:, 1), t, y(:, 2));
```


(c) Repeat the solution with c_{2} reduced by a factor of 5 .
$\mathrm{C}(2)=\mathrm{c}(2) / 5$;
[t, y] = ode45 (@spring, [0 5], y0, [], m, k, c); plot (t, y(:, 1), t, y(:, 2));

