Terminal Velocities of Smooth Spheres
 Solution

1. The drag force in newtons $\left(=\mathrm{kg}-\mathrm{m} / \mathrm{sec}^{2}\right)$ is

$$
F_{d}=\frac{1}{2} c_{d} \rho v^{2} A
$$

where $\quad c_{d}$ is the dimensionless coefficient of drag,
ρ is the density of the fluid (in $\mathrm{kg} / \mathrm{m}^{2}$),
v is the velocity of the object (in $\mathrm{m} / \mathrm{sec}$), and
A is the cross-sectional area (in m^{2}).
The coefficient of drag is expressed as a function of the Reynolds number $R_{e}=\frac{\rho v d}{\mu}$, where μ is the dynamic viscosity (in kg / m-sec) and d is diameter (in m) as

$$
c_{d}=\frac{24}{R_{e}}+\frac{6}{1+\sqrt{R_{e}}}+.4
$$

for $0 \leq R_{e} \leq 2 \cdot 10^{5}$. The gravitational force on an object is

$$
F_{g}=m g
$$

where $\quad m$ is the mass of the object (in kg), and
g is the acceleration of gravitational on earth (in $\mathrm{m} / \mathrm{sec}^{2}$).
For air $\rho=1.23 \mathrm{~kg} / \mathrm{m}^{2}$ and $\mu=1.78 \cdot 10^{-5} \mathrm{~kg} / \mathrm{m}-\mathrm{sec}$. The cross sectional area of a sphere is $A=\pi d^{2} / 4$ and the gravitational constant is $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$.

1. Construct a MATLAB function dragerror that has inputs v, m, d, ρ, and μ and returns the difference $F_{d}-F_{g}$.
```
function y = dragerror(v, m, d, rho, mu)
%
Re = rho*v*d/mu; % Reynolds number
cd = 24/Re+6/(1+sqrt(Re))+.4; % coefficient of drag
Fd = cd*rho*v*v*pi*d*d/8; % force of drag
y = Fd-9.8*m;
```

2. Use fzero to compute a zero of dragerror to get terminal velocities for each of the following cases:
a. $m=2$ gr and $d=2 \mathrm{~cm}$.
va = fzero ('dragerror', 100, optimset, .002, .02, 1.23, 1.78e-5)
returns
$v a=15.14396116880725$
b. $m=2 \mathrm{~kg}$ and $d=15 \mathrm{~cm}$.
vb = fzero ('dragerror', 100, optimset, 2, .15, 1.23, 1.78e-5)
returns
$\mathrm{vb}=66.54623135515701$
c. $m=200 \mathrm{~kg}$ and $d=1 \mathrm{~m}$.
vc = fzero ('dragerror', 100, optimset, 200, 1, 1.23, 1.78e-5)
returns
$v c=1.004341106536716 e+002$
