Finding the Dimensions of a Coil
 Due Tuesday Nov. 26 by 9:30 AM

Imagine a metal wire wrapped around and around itself forming a spiral. How thick is the coil for a wire of a given length? How long would a wire have to be if the thickness is some given value?

Begin by assuming we have a wire of thickness .1 cm that is wrapped around a circle of radius 1 cm . The spiral (i.e., the center of the wire) then can be represented parametrically as

$$
\begin{aligned}
& x(t)=\left(1.05+\frac{.1}{2 \pi} t\right) \cos (t) \\
& y(t)=\left(1.05+\frac{.1}{2 \pi} t\right) \sin (t)
\end{aligned}
$$

The arclength of the spiral corresponding to the interval $[0, \mathrm{~T}]$ is $\int_{0}^{\mathrm{T}} \sqrt{\left(\mathrm{x}^{\prime}(\mathrm{t})\right)^{2}+\left(\mathrm{y}^{\prime}(\mathrm{t})\right)^{2}} \mathrm{dt}$ cm . and the thickness in centimeters is $1.1+\frac{.1}{2 \pi} T$.
1.Write a Matlab function coil to evaluate the integrand. Make sure it returns a column vector as output if given a column vector as input.
2. Using quadl with a relative error tolerance of 1.e-8, find the arclength of the spiral corresponding to [0, 600]. You should get about $3,500 \mathrm{~cm}$. .
3. Using quad1 with a relative error tolerance of $1 . e-8$, find the arclength of the spiral corresponding to $[0,700]$. You should get about $4,600 \mathrm{~cm}$. .
4. Using fzero, find the thickness (to within .01 cm) of the coil of arclength $4,000 \mathrm{~cm}$.
5. Using fzero, find the arclength (to within .01 cm) of the coil of thickness 100 cm .

