Finding the Dimensions of a Coil

Solutions

Imagine a metal wire wrapped around and around itself forming a spiral. How thick is the coil for a wire of a given length? How long would a wire have to be if the thickness is some given value?

Begin by assuming we have a wire of thickness .1 cm that is wrapped around a circle of radius 1 cm . The spiral (i.e., the center of the wire) then can be represented parametrically as

$$
\begin{aligned}
& x(t)=\left(1.05+\frac{.1}{2 \pi} t\right) \cos (t) \\
& y(t)=\left(1.05+\frac{.1}{2 \pi} t\right) \sin (t)
\end{aligned}
$$

The arclength of the spiral corresponding to the interval $[0, \mathrm{~T}]$ is $\int_{0}^{\mathrm{T}} \sqrt{\left(\mathrm{x}^{\prime}(\mathrm{t})\right)^{2}+\left(\mathrm{y}^{\prime}(\mathrm{t})\right)^{2}} \mathrm{dt}$ cm . and the thickness in centimeters is $1.1+\frac{.1}{2 \pi} T$.
1.Write a Matlab function coil to evaluate the integrand. Make sure it returns a column vector as output if given a column vector as input.

```
function z = coil (t)
fac = .1/(2*pi);
xp = fac*cos(t)-(1.05+fac*t).*sin(t);
yp = fac*sin(t)+(1.05+fac*t).*
z = sqrt(xp.*xp+yp.*yp);
```

2. Using quadl with a relative error tolerance of 1.e-8, find the arclength of the spiral corresponding to $[0,600]$. You should get about $3,500 \mathrm{~cm}$. .

The statement
quadl('coil', 0, 600, 1.e-8)
returns
ans =
3. Using quadl with a relative error tolerance of 1.e-8, find the arclength of the spiral corresponding to [0, 700]. You should get about $4,600 \mathrm{~cm}$.

```
The statement
    quadl('coil', 0, 700, 1.e-8)
returns
    ans =
        4.634315617086571e+003
```

4. Using fzero, find the thickness (to within .01 cm) of the coil of arclength $4,000 \mathrm{~cm}$.
```
With the function
    function \(t=\) coil_length(T)
    t = quadl('coil', 0, T, 1.e-8)-4000;
```

the statement
fzero ('coil_length', [600 700], OPTIMSET('ToIX',01))
returns
ans $=$
$6.443342669279781 e+002$
which corresponds to a thickness in centimeters of
$1.1+.1^{*} \mathrm{ans} /\left(2^{*} \mathrm{pi}\right)$
ans =
11.38251296231021
5. Using fzero, find the arclength (to within .01 cm) of the coil of thickness 100 cm .

Corresponding to the thickness 100 , we would have a parameter T of, $2^{*} \mathrm{pi}^{*}(100-1.1) / .1$
ans $=$
$6.214070268800611 \mathrm{e}+003$
The statement
quadl('coil', 0, ans, 1.e-8)
produces an arclength in centimeters of ans =

