Asymptotic Dominance Problems

1. Display a function $f: N \rightarrow R$ that is $\mathrm{O}(1)$ but is not constant.

The function $f(n)=\left\{\begin{array}{ll}0 & \text { if } n=0 \\ 1 & \text { if } n>0\end{array}\right.$ is not constant but for $n \geq 0, \quad|f(n)| \leq 1 \cdot| | \mid$.
2. Define the relation " \leq " on functions from N into R by $f \leq g$ if and only if $f=\mathrm{O}(g)$. Prove that \leq is reflexive and transitive. (Recall: to be reflexive, you must

To prove reflexivity, notice that for any $f: N \rightarrow R$ and all $n \geq 0,|f(n)| \leq 1 \cdot|f(n)|$.
To prove transitivity, suppose $f=\mathrm{O}(g)$ and $g=\mathrm{O}(h)$, then by definition, there exist $N_{f} \geq 0, M_{f} \geq 0, N_{g} \geq 0, M_{g} \geq 0$, so that for $n \geq N_{f},|f(n)| \leq M_{f}|g(n)|$ and for $n \geq N_{g},|g(n)| \leq M_{g}|h(n)|$. Thus for $n \geq \max \left\{N_{f}, N_{g}\right\},|f(n)| \leq M_{f} M_{g}|h(n)|$. We may conclude that $f=\mathrm{O}(h)$.
3. Suppose $f=\mathrm{O}(g)$ and $g=\mathrm{O}(h)$, prove or disprove (with a simple counter-example) that $f=\mathrm{O}(h)$.

Suppose $f=\mathrm{O}(g)$ and $g=\mathrm{O}(h)$, then by definition, there exist $N_{f} \geq 0, M_{f} \geq 0, N_{g} \geq 0, M_{g} \geq 0$, so that for $n \geq N_{f},|f(n)| \leq M_{f}|g(n)|$ and for $n \geq N_{g},|g(n)| \leq M_{g}|h(n)|$. Thus for $n \geq \max \left\{N_{f}, N_{g}\right\},|f(n)| \leq M_{f} M_{g}|h(n)|$.We may conclude that $f=\mathrm{O}(h)$.
4. Suppose $f=o(g)$ and $g=\mathrm{O}(h)$. Prove that $f=o(h)$.

Since $g=\mathrm{O}(h)$, there exist M_{1} and N_{1} so that $n \geq N_{1} \Rightarrow|g(n)| \leq M_{1}|h(n)|$. Given $\varepsilon>0$, let $\varepsilon^{\prime}=\varepsilon / M_{1}$. Since $f=o(g)$, there exist N_{2} such that $n \geq N_{2} \Rightarrow|f(n)| \leq \varepsilon^{\prime}|g(n)|=\varepsilon / M_{1}|g(n)|$. Thus letting $N=\max \left\{N_{1}, N_{2}\right\}$, for $n \geq N$ we have $|f(n)| \leq \varepsilon / M|g(n)| \leq \varepsilon|h(n)|$ so $f=o(h)$.
5. Suppose $f=\mathrm{O}(g)$ and $g=\mathrm{O}(h)$. If $h=\mathrm{O}(f)$, prove that $h=\mathrm{O}(g)$.

By definition, there exist $N_{f} \geq 0, M_{f} \geq 0, N_{h} \geq 0, M_{h} \geq 0$, so that for $n \geq N_{f}$, $|f(n)| \leq M_{f}|g(n)|$ and for $n \geq N_{h},|h(n)| \leq M_{h}|f(n)|$. Thus for $n \geq \max \left\{N_{f}, N_{h}\right\}$, $|h(n)| \leq M_{f} M_{h}|g(n)|$. We may conclude that $h=\mathrm{O}(g)$.
6. Using Theorem 2 and induction prove that if for $i=1,2, \ldots, k, f_{i}=\mathrm{O}\left(g_{i}\right)$, then $\sum_{i=1}^{k} f_{i}=\mathrm{O}\left(\sum_{i=1}^{k}\left|g_{i}\right|\right)$.

For $k=1$, we have $\sum_{i=1}^{1} f_{i}=f_{1}=\mathrm{O}\left(g_{1}\right)=\mathrm{O}\left(\sum_{i=1}^{1} g_{i}\right)$. Now assume $\sum_{i=1}^{k} f_{i}=\mathrm{O}\left(\sum_{i=1}^{k}\left|g_{i}\right|\right)$ and consider $\sum_{i=1}^{k+1} f_{i}$. Since $\sum_{i=1}^{k} f_{i}=\mathrm{O}\left(\sum_{i=1}^{k}\left|g_{i}\right|\right)$ and $f_{k+1}=\mathrm{O}\left(g_{k+1}\right)$, Theorem 2 guarantees that $\sum_{i=1}^{k+1} f_{i}=\sum_{i=1}^{k} f_{i}+f_{k+1}=\mathrm{O}\left(\sum_{i=1}^{k}\left|g_{i}\right|+\left|g_{k+1}\right|\right)=\mathrm{O}\left(\sum_{i=1}^{k+1}\left|g_{i}\right|\right)$.
7. Employing induction and Theorem 3, prove that if for $i=1,2, \ldots, k, f_{i}=\mathrm{O}(g)$, then $\sum_{i=1}^{k} f_{i}=\mathrm{O}(g)$.

For $k=1$, we have $\sum_{i=1}^{1} f_{i}=f_{1}=\mathrm{O}(g)$ by hypothesis. Now assume $\sum_{i=1}^{k} f_{i}=\mathrm{O}(g)$ and consider $\sum_{i=1}^{k+1} f_{i}$. Since $\sum_{i=1}^{k} f_{i}=\mathrm{O}(g)$ and $f_{k+1}=\mathrm{O}(g)$, Theorem 3 guarantees that

$$
\sum_{i=1}^{k+1} f_{i}=\sum_{i=1}^{k} f_{i}+f_{k+1}=\mathrm{O}(\max \{|g|,|g|\})=\mathrm{O}(|g|)=\mathrm{O}(g)
$$

8. Show that if $f(n)=12 n+3$ and $g(n)=n^{2}$, then $f=O(g)$.

Let $N=3$ and $M=13$. For $n \geq N$:

$$
|f(n)|=|12 n+3|=12 n+3 \leq 12 n+n=13 n \leq 13 n^{2}=13\left|n^{2}\right|=M|g(n)| .
$$

Thus $f=O(g)$.
9. Define $f: N \rightarrow R$ by $f(n)=\left\{\begin{array}{ll}10^{100} & \text { for } n=17 \\ n & \text { for } n \neq 17\end{array}\right.$. Prove that $f=\mathrm{O}(n)$.

For $n \geq 18,|f(n)|=|n| \leq 1 \cdot|n|$, so $f=\mathrm{O}(n)$.
10. Consider the functions f and g defined on N by $f(n)=\left\{\begin{array}{ll}n^{2} & \text { for } n \text { even } \\ 2 n & \text { for } n \text { odd }\end{array}\right.$ and $g(n)=n^{2}$. Show that $f=\mathrm{O}(g)$ but that $f \neq o(g)$ and $g \neq \mathrm{O}(f)$.
$f=\mathrm{O}(g)$: Since for $n \geq 0,2 n \leq 2 n^{2}$; we have that $|2 n| \leq 2\left|n^{2}\right|$ and $\left|n^{2}\right| \leq 2\left|n^{2}\right|$, so $|f(n)| \leq 2|g(n)|$. Thus $f=\mathrm{O}(g)$.
$f \neq o(g)$: Suppose $f=o(g)$, then for $\varepsilon=1 / 2$ there is a non-negative N so that for all $n \geq N,|f(n)| \leq \varepsilon|g(n)|$. But letting $n=2$ if $N=0$ and $n=N$ or $N+1$ (whichever is even) if N is positive, we have $|f(n)|=n^{2}>\frac{1}{2} n^{2}=\varepsilon|g(n)|$. This is a contradiction, so $f \neq o(g)$
$g \neq \mathrm{O}(f)$.: Suppose $g=\mathrm{O}(f)$., then there exist nonnegative M and N so that for all $n \geq N,|g(n)| \leq M|f(n)|$. But letting n be odd and greater than N and $2 M$, then we have $|g(n)|=n^{2}=n \cdot n>2 M n=M|2 n|=M|f(n)|$. This is a contradiction, so $g \neq \mathrm{O}(f)$.
11. Show that $2^{n}=O(n!)$.

For $n \geq 2$ and $i=2,3, \ldots, n$, we have $2 \leq i$, thus $\prod_{i=2}^{n} 2 \leq \prod_{i=2}^{n} i$. Therefore, $2^{n}=\prod_{i=1}^{n} 2=2 \cdot \prod_{i=2}^{n} 2 \leq 2 \cdot \prod_{i=2}^{n} i=2 \cdot \prod_{i=1}^{n} i=2 n!$ and we have $\left|2^{n}\right| \leq 2 \cdot|n!|$, thus $2^{n}=\mathrm{O}(n!)$.
12. Show that for any real value of $a, a^{n}=\mathrm{O}(n!)$. (Hint: be careful to consider negative values of a.)

Define $K=\lceil|a|\rceil$ (i.e. K is the first integer greater than or equal to $|a|$). For $n \geq K$ and $i=K, K+1, \ldots, n$, we have $|a| \leq i$, thus $\prod_{i=K}^{n}|a| \leq \prod_{i=K}^{n} i$. Therefore, $|a|^{n}=\prod_{i=1}^{n}|a|=|a|^{K-1} \cdot \prod_{i=K}^{n}|a| \leq|a|^{K-1} \cdot \prod_{i=K}^{n} i \leq|a|^{K-1} \cdot \prod_{i=1}^{n} i=|a|^{K-1} n!$. So with $M=|a|^{K-1}$ and $N=K$, we have $\left|a^{n}\right| \leq M \cdot|n!|$ for all $n \geq N$. Thus $a^{n}=\mathrm{O}(n!)$.
13. Show that for any $b>1, \log _{b} n=O(n)$

Consider any positive ε, and choose $N=\left\lceil 1+\frac{2}{\left(b^{\varepsilon}-1\right)^{2}}\right\rceil$. Then, if $n>N$, we have $n>1+\frac{2}{\left(b^{\varepsilon}-1\right)^{2}}$, thus $\frac{(n-1)}{2}\left(b^{\varepsilon}-1\right)^{2}>1$, and $\frac{n(n-1)}{2}\left(b^{\varepsilon}-1\right)^{2}>n$. But using the binomial theorem, we have

$$
b^{\varepsilon n}=\left(b^{\varepsilon}\right)^{n}=\left(1+\left(b^{\varepsilon}-1\right)\right)^{n}=\sum_{j=0}^{n}\binom{n}{j}\left(b^{\varepsilon}-1\right)^{j}>\binom{n}{2}\left(b^{\varepsilon}-1\right)^{2}>n .
$$

By taking base b logarithms, we have

$$
\varepsilon|n|=\varepsilon n=\log _{b} b^{\varepsilon n}>\log _{b} n=\left|\log _{b} n\right| .
$$

14. Prove that if $0 \leq a<b$, then $a^{n}=o\left(b^{n}\right)$

If $a=0$, then for all $\varepsilon>0$ and all $n \geq 1$, we have $\left|a^{n}\right|=0 \leq \varepsilon\left|b^{n}\right|$. Assume now that $a>0$. Take $N=\ln (\varepsilon) / \ln (a / b)$ and (assuming $\varepsilon<1)$, for $n \geq N$, $n \cdot \ln (a / b) \leq \ln (\varepsilon)$ and $\left|a^{n}\right|=a^{n} \leq \varepsilon \cdot b^{n}=\varepsilon\left|b^{n}\right|$. (If $\varepsilon \geq 1$ then $\left|a^{n}\right|=a^{n} \leq \cdot b^{n} \leq \varepsilon \cdot b^{n}=\varepsilon\left|b^{n}\right|$ for $n \geq 0$.) Thus $a^{n}=o\left(b^{n}\right)$.
15. Prove that if $0 \leq a<b$, then $n^{a}=o\left(n^{b}\right)$

Given any $\varepsilon>0$, let $N=(1 / \varepsilon)^{1 /(b-a)}$. Notice then for $n \geq N=(1 / \varepsilon)^{1 /(b-a)}$, $n^{b-a} \geq 1 / \varepsilon$, and $n^{-(b-a)} \leq \varepsilon$. So $\left|n^{a}\right|=\left|n^{-(b-a)} n^{b}\right|=\left|n^{-(b-a)}\right|\left|n^{b}\right| \leq \varepsilon\left|n^{b}\right|$. Therefore, $n^{a}=o\left(n^{b}\right)$.
16. Prove that if $0<a<b$, then $b^{n} \neq \mathrm{O}\left(a^{n}\right)$.

Given $M \geq 0$ and $N \geq 0$, let $\bar{M}=\max \{M, 1\}$ thus $\bar{M} \geq M$ and $\ln (\bar{M}) \geq 0$. Notice that $\ln \left(\frac{b}{a}\right)>0$ and choose $n=\max \left\{N,\left[\frac{\ln (\bar{M})}{\ln \left(\frac{b}{a}\right)}\right]\right\}+1$. For this n we have $n>\frac{\ln (\bar{M})}{\ln \left(\frac{b}{a}\right)}$, thus $n \ln \left(\frac{b}{a}\right)>\ln (\bar{M})$ and $\left(\frac{b}{a}\right)^{n}>\bar{M} \geq M$. But then $\left|b^{n}\right|=b^{n}>M a^{n}=M\left|a^{n}\right|$ so $b^{n} \neq \mathrm{O}\left(a^{n}\right)$
17. Prove that $\sqrt{n}=\mathrm{O}\left(n^{2}\right)$.

Let $M=1$ and $N=1$. For $n \geq N, n^{3 / 2} \geq 1$. Thus $|\sqrt{n}|=\sqrt{n} \leq n^{3 / 2} \sqrt{n}=n^{2}=1\left|n^{2}\right|$, so $\sqrt{n}=\mathrm{O}\left(n^{2}\right)$.
18. Prove that $e^{\left(n^{2}\right)} \neq O\left(e^{n}\right)$.

Let $\varepsilon=1$, consider and N, and choose $n \geq \max \{N, 2\}$. Since $n \geq 2, n^{2} \geq 2 n>n$ and $\left|e^{n^{2}}\right|>e^{n}=\varepsilon|n|$ so $e^{\left(n^{2}\right)} \neq o\left(e^{n}\right)$.
19. Using only Definition 1, prove that $3 n^{4}=\mathrm{O}\left(n^{4.5}\right)$.

Let $M=3$ and $N=1$. For $n \geq N=1$, we have $\sqrt{n} \geq 1$, so $\left|3 n^{4}\right| \leq 3 n^{4} \sqrt{n}=3\left|n^{4.5}\right|$. Thus $3 n^{4}=\mathrm{O}\left(n^{4.5}\right)$.
20. Using only Definition 2 , prove that $5^{n} \neq o\left(2 \cdot 4^{n}\right)$.

Let $\varepsilon=1 / 4$ and suppose there exists N so that for all $n \geq N,\left|5^{n}\right| \leq \varepsilon\left|2 \cdot 4^{n}\right|$. But for $n=\max \{1,\lceil N\rceil\}$, we have $n \geq N$ and $n \geq 1$, so $\left(\frac{5}{4}\right)^{n}>1$ and $5^{n}>4^{n}$, thus $\left|5^{n}\right|=5^{n}>4^{n}=1 / 2\left|2 \cdot 4^{n}\right|=\varepsilon\left|2 \cdot 4^{n}\right|$ and $5^{n} \neq o\left(2 \cdot 4^{n}\right)$.
21. Show that if $f(n)=n^{2}$ and $g(n)=n$, then $f \neq o(g)$.

Let $\varepsilon=1$ and consider any positive N. Let $n=N+1$ so $n \geq 2$ and $n \geq N$. We have:

$$
|f(n)|=\left|n^{2}\right|=|n| \cdot|n| \geq 2|n|>\varepsilon|n|=\varepsilon|g(n)| .
$$

Thus $f \neq o(g)$.
22. Show that $\log _{2} n!=\mathrm{O}\left(n \log _{2} n\right)$ and $n \log _{2} n=\mathrm{O}\left(\log _{2} n!\right)$.

For $n \geq 1$, we have $\log _{2} n!=\log _{2}\left(\prod_{i=1}^{n} i\right)=\sum_{i=1}^{n} \log _{2} i \leq \sum_{i=1}^{n} \log _{2} n=n \log _{2} n$. Thus $\left|\log _{2} n!\right| \leq 1 \cdot|n \log n|$ and $\log _{2} n!=\mathrm{O}\left(n \log _{2} n\right)$. To show $n \log _{2} n=\mathrm{O}\left(\log _{2} n!\right)$ let $N=8$ and $M=3$. Notice that if $n \geq 8, \frac{n}{8} \geq 1$, so $\left(\frac{n}{2}\right)^{3}=\frac{n}{8} n^{2} \geq n^{2}$. Also notice that $\left\lceil\frac{n}{2}\right\rceil-1 \leq \frac{n}{2}$, so $n-\left\lceil\frac{n}{2}\right\rceil+1 \geq n-\frac{n}{2}=\frac{n}{2}$. Finally
$n^{n}=\left(n^{2}\right)^{n / 2} \leq\left(\left(\frac{n}{2}\right)^{3}\right)^{n / 2}=\left(\frac{n}{2}\right)^{3 n / 2} \leq\left(\frac{n}{2}\right)^{3\left(n-\left\lceil\frac{n}{2}\right\rceil+1\right)}=\prod_{k=\left\lceil\frac{n}{2}\right\rceil}^{n}\left\lceil\frac{n}{2}\right\rceil^{3} \leq \prod_{k=\left\lceil\frac{n}{2}\right\rceil}^{n} k^{3} \leq \prod_{k=1}^{n} k^{3}=(n!)^{3}$.

By taking logs, we have for $n \geq 8,\left|n \log _{2} n\right|=n \log _{2} n \leq 3 \log _{2} n!=3\left|\log _{2} n!\right|$.

