Homework 11 Solutions

CS 336

1. Consider the set A of all finitely long strings of 0 's and 1 's. Prove that A is countably infinite.

Consider $f: N \rightarrow A$ defined for $k=0,1, \ldots$ by $f(k)=$ the string formed from the binary representation of $k+2$ after the removal of the leading 1 . That there is a leading 1 is guaranteed since $k+2 \geq 2$. To show that this mapping is one-to-one, suppose i and j are two distinct natural numbers. Thus, the binary representations of $i+2$ and $j+2$ are also distinct. If these are distinct, so will be the strings remaining after the removal of the leading 1 's. Thus $f(i) \neq f(j)$. To show that f is onto consider any such string s. Interpret the string formed by concatenating 1 with s as a binary number, subtract 2 from this number, and call the result k. It is clear that $f(k)=s$. (An alternative proof uses the theorem that a countably infinite union of a collection of finite sets is countable. Since the set of strings of length n is finite, the union of all such sets is A. That A is infinite follows from observing that the mapping of appending a 0 to the end of every string maps A to a proper subset.)
2. Consider the set B of all finite subsets of integers. Prove that B is countably infinite.

For natural numbers k let $\bar{B}_{k}=\{i \in \mathrm{Z} \mid-k \leq i \leq k\}$ and B_{k} be all of the subsets of \bar{B}_{k}. Since \bar{B}_{k} is finite, so will be B_{k}. But every finite subset of integers must be contained in some B_{k} (actually an infinite number of them). We conclude that
$B=\bigcup_{k \in \mathbb{N}} B_{k}$ and by Theorem 6, B is countable. A subset of B is $S=\{\{0\},\{1\},\{2\}, \ldots\}$ (the singletons of the natural numbers). That this subset is infinite is shown by Theorem 4 and the mapping $f: N \rightarrow S$ defined by $f(k)=\{k\}$ which is obviously one-to-one. We conclude that B is both countable and infinite, thus countable infinite.
3. Consider the set B of all integer-valued functions defined on the set $\{0,1\}$. Is B finite, countably infinite, or uncountably infinite? (For example, one such function is $f(0)=-7$, $f(1)=17$) Prove your claim.

The set B is countably infinite. To prove this, first we define B_{i} as the set of all functions mapping 0 to i and 1 to an integer. Clearly $B=\bigcup_{i=-\infty}^{\infty} B_{i}$. If each set B_{i} is countably infinite then the theorem guarantees that B is countably infinite since it is the countably infinite union of countably infinite sets. To prove each B_{i} is countably infinite, let $g_{i}: N \rightarrow B_{i}$ be defined for $j=0,1, \ldots$ by $g_{i}(j)=f_{j}^{i}$ where $f_{j}^{i}(0)=i$ and $f_{j}^{i}(1)=j / 2$ if j is even and $f_{j}^{i}(1)=-(j+1) / 2$ if j is odd. This function g_{j} maps the natural numbers one-to-one onto B_{i}, thus B_{i} is countably infinite.

