Name Seating Section: R M L

Homework 13
CS 336

The important issue is the logic you used to arrive at your answer.

1. Consider the functions f and g defined on \mathbf{N} by $f(n)=\left\{\begin{array}{ll}n^{2} & \text { for } n \text { even } \\ 2 n & \text { for } n \text { odd }\end{array}\right.$ and $g(n)=n^{2}$. Show that $f=\mathrm{O}(g)$ but that $f \neq \mathrm{o}(g)$ and $g \neq \mathrm{O}(f)$.
2. Display a function $f: N \rightarrow R$ that is $\mathrm{O}(1)$ but is not constant.
3. Define the relation " \leq " on functions from \mathbf{N} into \mathbf{R} by $f \leq g$ if and only if $f=\mathrm{O}(g)$. Prove that \leq is reflexive and transitive. (Recall: to be reflex ive, you must have $f \leq f$ for all functions f; to be transitive, you must have that $f \leq g$ and $g \leq h$ implies $f \leq h$ for all functions f, g, and h.)
