Name ______ Seating Section: **R M L**

Homework 13 CS 336

The important issue is the logic you used to arrive at your answer.

1. Consider the functions *f* and *g* defined on **N** by $f(n) = \begin{cases} n^2 & \text{for } n \text{ even} \\ 2n & \text{for } n \text{ odd} \end{cases}$ and $g(n) = n^2$. Show that f = O(g) but that $f \neq o(g)$ and $g \neq O(f)$.

2. Display a function $f: N \to R$ that is O(1) but is not constant.

3. Define the relation " \leq " on functions from **N** into **R** by $f \leq g$ if and only if f = O(g). Prove that \leq is reflexive and transitive. (Recall: to be *reflexive*, you must have $f \leq f$ for all functions f; to be *transitive*, you must have that $f \leq g$ and $g \leq h$ implies $f \leq h$ for all functions f, g, and h.)