
Asymptotic Dominance Theory 
 
• Definition 1: Given the functions :f RΝ→  and :g RΝ→ , f is asymptotically dominated 

by g if there exist non-negative constants M and N such that for all n N≥ , 
f n M g n( ) ( )≤ .  This is denoted by f g= Ο( ) . 

 
• Definition 2: Given the functions f N R: →  and g N R: → , f g= ο ( )  if for every 

positive ε , there exists a non-negative constant N such that for all n N≥ ,  
f n g n( ) ( )≤ ε . 

 
Theorem 1: If f g= Ο( ) , then for any constant s, sf g= Ο( ) . 
 
Proof:  By definition, there exist non-negative constants M and N such that for all n N≥ , 
f n M g n( ) ( )≤ .  Thus for all n N≥ , sf n s M g n( ) ( )≤ . Therefore, sf g= Ο( ) . � 

 
Theorem 2: If f g1 1= Ο( )  and f g2 2= Ο( ) , then f f g g1 2 1 2+ = +Ο( ) . 
 
Proof: By definition, there exist non-negative constants M1 and N1 such that for all n N≥ 1 , 
f n M g n1 1 1( ) ( )≤  and there exist non-negative constants M2 and N 2 such that for all 
n N≥ 2 , f n M g n2 2 2( ) ( )≤ .  For n N N≥ max{ , }1 2  both inequalities hold so 
f n f n f n f n M g n M g n M M g n g n1 2 1 2 1 1 2 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) max{ , } ( ) ( )+ ≤ + ≤ + ≤ + . 

Therefore, f f g g1 2 1 2+ = +Ο( ) . � 
 

 Corollary 2.1:  If for i k= 1 2, , ..., , f gi i= Ο( ) , then f gi
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Theorem 3: If f g1 1= Ο( )  and f g2 2= Ο( ) , then f f g g1 2 1 2+ = Ο(max{ , }) . 
 
Proof: By definition, there exist non-negative constants M1 and N1 such that for all n N≥ 1 , 
f n M g n1 1 1( ) ( )≤  and there exist non-negative constants M2 and N 2 such that for all 
n N≥ 2 , f n M g n2 2 2( ) ( )≤ .  For n N N≥ max{ , }1 2  both inequalities hold so 
f n f n f n f n M g n M g n M M g n g n1 2 1 2 1 1 2 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) max{ ( ) ( )}+ ≤ + ≤ + ≤ + + . 

Therefore, f f g g1 2 1 2+ = Ο(max{ , }) . � 
 

 Corollary 3.1:  If for i k= 1 2, , ..., , f gi i= Ο( ) , then f gi
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 Corollary 3.2:  If for i k= 1 2, , ..., , f gi = Ο( ) , then f gi
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Theorem 4: If f g1 1= Ο( )  and f g2 2= Ο( ) , then f f g g1 2 1 2⋅ = ⋅Ο( ) . 
 



Proof: By definition, there exist non-negative constants M1 and N1 such that for all n N≥ 1 , 
f n M g n1 1 1( ) ( )≤  and there exist non-negative constants M2 and N 2 such that for all 
n N≥ 2 , f n M g n2 2 2( ) ( )≤ .  For n N N≥ max{ , }1 2  both inequalities hold so 
f n f n f n f n M g n M g n M M g n g n1 2 1 2 1 1 2 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( )⋅ = ⋅ ≤ ⋅ ≤ ⋅ ⋅ . 

Therefore, f f g g1 2 1 2⋅ = ⋅Ο( ) . � 
 

 Corollary 4.1:  If for i k= 1 2, , ..., , f gi i= Ο( ) , then f gi
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Theorem 5: If f g1 1= Ο( ) , g f2 2= Ο( ) , and g2  has no zeros. then f f g g1 2 1 2/ ( / )= Ο . 
 
Proof: By definition, there exist non-negative constants M1 and N1 such that for all n N≥ 1 , 
f n M g n1 1 1( ) ( )≤  and there exist non-negative constants M2 and N 2 such that for all 
n N≥ 2 , g n M f n2 2 2( ) ( )≤ .  Notice that since g2  has no zeros, then neither does f 2 . 
Inverting this inequality, we obtain that for all n N≥ 2 , 1 12 2 2/ ( ) / ( )f n M g n≤ .  For 
n N N≥ max{ , }1 2  both inequalities hold so 
f n f n f n f n M g n M g n M M g n g n1 2 1 2 1 1 2 2 1 2 1 21 1( ) / ( ) ( ) / ( ) ( ) / ( ) ( ) ( ( ) / ( )= ⋅ ≤ ⋅ ≤ ⋅ . 

Therefore, f f g g1 2 1 2/ ( / )= Ο . � 
 
Theorem 6: If ba ≤ , then n na b= Ο( )   
 

Proof: For n ≥ 0 , n nb a− − ≤ =( ) 0 1 , and n n n n n na b a b b a b b= = ≤ ⋅− − − −( ) ( ) 1 . Therefore, 

n na b= Ο( ) . � 
 
Theorem 7: If ba < , then n na b= ο ( )   
 
Proof: Given any ε > 0 , let N b a= −( / ) /( )1 1ε . Notice then for n N b a≥ = −( / ) /( )1 1ε , 
nb a− ≥ 1 / ε , and n b a− − ≤( ) ε . So n n n n n na b a b b a b b= = ≤− − − −( ) ( ) ε . Therefore, 

n na b= ο ( ) . � 
 



 
Example 1: If f g1 1= Ο( )  and f g2 2= Ο( ) , then f f1 2/  may not be Ο( / )g g1 2 . 
 
Proof:  Let f n f n1 2 1( ) ( )= = , for all n ≥ 0 . Then f1 1= Ο( )  and f n2 = Ο( )  but 
f f n1 2 1 1/ ( / )= ≠ Ο . To see this, consider any N ≥ 0  and M ≥ 0 . Choose any 
n N M> max{ , } . Notice that then 1 1= > M n/ , so 1 1≠ Ο( / )n . � 
 
Example 2: If ba < , then n nb a≠ Ο( ) . 
 
Proof: Suppose n nb a= Ο( ) , then there exist N ≥ 0  and M ≥ 0  so that for all n N≥ , 
n M nb a≤ . Choose any n N M b a> −max{ , }/( )1 . Notice that then n Mb a− > , so 

n n M n M nb b a a= > = , and n nb a≠ Ο( ) . � 

 
Example 3: If f is any polynomial of degree k then f nk= Ο( ) . 
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Proof- 2: Without loss of generality, assume f n a ni
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. By Theorem 6, n ni k= Ο( ) , 

for 0 ≤ ≤i k . By Theorem 1, a n ni
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