Asymptotic Dominance Theory

- Definition 1: Given the functions $f: \mathrm{N} \rightarrow R$ and $g: \mathrm{N} \rightarrow R, f$ is asymptotically dominated by g if there exist non-negative constants M and N such that for all $n \geq N$, $|f(n)| \leq M|g(n)|$. This is denoted by $f=\mathrm{O}(g)$.
- Definition 2: Given the functions $f: N \rightarrow R$ and $g: N \rightarrow R, f=o(g)$ if for every positive ε, there exists a non-negative constant N such that for all $n \geq N$, $|f(n)| \leq \varepsilon|g(n)|$.

Theorem 1: If $f=\mathrm{O}(g)$, then for any constant $s, s f=\mathrm{O}(g)$.
Proof: By definition, there exist non-negative constants M and N such that for all $n \geq N$, $|f(n)| \leq M|g(n)|$. Thus for all $n \geq N,|s f(n)| \leq|s| M|g(n)|$. Therefore, $s f=\mathrm{O}(g)$.

Theorem 2: If $f_{1}=\mathrm{O}\left(g_{1}\right)$ and $f_{2}=\mathrm{O}\left(g_{2}\right)$, then $f_{1}+f_{2}=\mathrm{O}\left(\left|g_{1}\right|+\left|g_{2}\right|\right)$.
Proof: By definition, there exist non-negative constants M_{1} and N_{1} such that for all $n \geq N_{1}$, $\left|f_{1}(n)\right| \leq M_{1}\left|g_{1}(n)\right|$ and there exist non-negative constants M_{2} and N_{2} such that for all $n \geq N_{2}, \quad\left|f_{2}(n)\right| \leq M_{2}\left|g_{2}(n)\right|$. For $n \geq \max \left\{N_{1}, N_{2}\right\}$ both inequalities hold so $\left|f_{1}(n)+f_{2}(n)\right| \leq\left|f_{1}(n)\right|+\left|f_{2}(n)\right| \leq M_{1}\left|g_{1}(n)\right|+M_{2}\left|g_{2}(n)\right| \leq \max \left\{M_{1}, M_{2}\right\}\left|g_{1}(n)\right|+\left|g_{2}(n)\right|$. Therefore, $f_{1}+f_{2}=\mathrm{O}\left(\left|g_{1}\right|+\left|g_{2}\right|\right)$.

Corollary 2.1: If for $i=1,2, \ldots, k, f_{i}=\mathrm{O}\left(g_{i}\right)$, then $\sum_{i=1}^{k} f_{i}=\mathrm{O}\left(\sum_{i=1}^{k}\left|g_{i}\right|\right)$.
Theorem 3: If $f_{1}=\mathrm{O}\left(g_{1}\right)$ and $f_{2}=\mathrm{O}\left(g_{2}\right)$, then $f_{1}+f_{2}=\mathrm{O}\left(\max \left\{\left|g_{1}\right|,\left|g_{2}\right|\right\}\right)$.
Proof: By definition, there exist non-negative constants M_{1} and N_{1} such that for all $n \geq N_{1}$, $\left|f_{1}(n)\right| \leq M_{1}\left|g_{1}(n)\right|$ and there exist non-negative constants M_{2} and N_{2} such that for all $n \geq N_{2}, \quad\left|f_{2}(n)\right| \leq M_{2}\left|g_{2}(n)\right|$. For $n \geq \max \left\{N_{1}, N_{2}\right\}$ both inequalities hold so $\left|f_{1}(n)+f_{2}(n)\right| \leq\left|f_{1}(n)\right|+\left|f_{2}(n)\right| \leq M_{1}\left|g_{1}(n)\right|+M_{2}\left|g_{2}(n)\right| \leq\left(M_{1}+M_{2}\right) \max \left\{\left|g_{1}(n)\right|+\left|g_{2}(n)\right|\right\}$. Therefore, $f_{1}+f_{2}=\mathrm{O}\left(\max \left\{\left|g_{1}\right|,\left|g_{2}\right|\right\}\right)$.

Corollary 3.1: If for $i=1,2, \ldots, k, f_{i}=\mathrm{O}\left(g_{i}\right)$, then $\sum_{i=1}^{k} f_{i}=\mathrm{O}\left(\max _{i=1, \ldots, k}\left|g_{i}\right|\right)$.
Corollary 3.2: If for $i=1,2, \ldots, k, f_{i}=\mathrm{O}(g)$, then $\sum_{i=1}^{k} f_{i}=\mathrm{O}(g)$.
Theorem 4: If $f_{1}=\mathrm{O}\left(g_{1}\right)$ and $f_{2}=\mathrm{O}\left(g_{2}\right)$, then $f_{1} \cdot f_{2}=\mathrm{O}\left(g_{1} \cdot g_{2}\right)$.

Proof: By definition, there exist non-negative constants M_{1} and N_{1} such that for all $n \geq N_{1}$, $\left|f_{1}(n)\right| \leq M_{1}\left|g_{1}(n)\right|$ and there exist non-negative constants M_{2} and N_{2} such that for all $n \geq N_{2}, \quad\left|f_{2}(n)\right| \leq M_{2}\left|g_{2}(n)\right|$. For $n \geq \max \left\{N_{1}, N_{2}\right\} \quad$ both inequalities hold so $\left|f_{1}(n) \cdot f_{2}(n)\right|=\left|f_{1}(n)\right| \cdot\left|f_{2}(n)\right| \leq M_{1}\left|g_{1}(n)\right| \cdot M_{2}\left|g_{2}(n)\right| \leq\left(M_{1} \cdot M_{2}\right)\left(\left|g_{1}(n)\right| \cdot\left|g_{2}(n)\right|\right.$. Therefore, $f_{1} \cdot f_{2}=\mathrm{O}\left(g_{1} \cdot g_{2}\right)$.

Corollary 4.1: If for $i=1,2, \ldots, k, f_{i}=\mathrm{O}\left(g_{i}\right)$, then $\prod_{i=1}^{k} f_{i}=\mathrm{O}\left(\prod_{i=1}^{k} g_{i}\right)$.

Theorem 5: If $f_{1}=\mathrm{O}\left(g_{1}\right), g_{2}=\mathrm{O}\left(f_{2}\right)$, and g_{2} has no zeros. then $f_{1} / f_{2}=\mathrm{O}\left(g_{1} / g_{2}\right)$.
Proof: By definition, there exist non-negative constants M_{1} and N_{1} such that for all $n \geq N_{1}$, $\left|f_{1}(n)\right| \leq M_{1}\left|g_{1}(n)\right|$ and there exist non-negative constants M_{2} and N_{2} such that for all $n \geq N_{2},\left|g_{2}(n)\right| \leq M_{2}\left|f_{2}(n)\right|$. Notice that since g_{2} has no zeros, then neither does f_{2}. Inverting this inequality, we obtain that for all $n \geq N_{2},\left|1 / f_{2}(n)\right| \leq M_{2}\left|1 / g_{2}(n)\right|$. For $n \geq \max \left\{N_{1}, N_{2}\right\} \quad$ both inequalities hold so $\left|f_{1}(n) / f_{2}(n)\right|=\left|f_{1}(n)\right| \cdot\left|1 / f_{2}(n)\right| \leq M_{1}\left|g_{1}(n)\right| \cdot M_{2}\left|1 / g_{2}(n)\right| \leq\left(M_{1} \cdot M_{2}\right)\left(\left|g_{1}(n)\right| /\left|g_{2}(n)\right|\right.$. Therefore, $f_{1} / f_{2}=\mathrm{O}\left(g_{1} / g_{2}\right)$.

Theorem 6: If $a \leq b$, then $n^{a}=\mathrm{O}\left(n^{b}\right)$
Proof: For $n \geq 0, n^{-(b-a)} \leq n^{0}=1$, and $\left|n^{a}\right|=\left|n^{-(b-a)} n^{b}\right|=\left|n^{-(b-a)}\right|\left|n^{b}\right| \leq 1 \cdot\left|n^{b}\right|$. Therefore, $n^{a}=\mathrm{O}\left(n^{b}\right)$.

Theorem 7: If $a<b$, then $n^{a}=o\left(n^{b}\right)$
Proof: Given any $\varepsilon>0$, let $N=(1 / \varepsilon)^{1 /(b-a)}$. Notice then for $n \geq N=(1 / \varepsilon)^{1 /(b-a)}$, $n^{b-a} \geq 1 / \varepsilon$, and $n^{-(b-a)} \leq \varepsilon$. So $\quad\left|n^{a}\right|=\left|n^{-(b-a)} n^{b}\right|=\left|n^{-(b-a)}\right|\left|n^{b}\right| \leq \varepsilon\left|n^{b}\right|$. Therefore, $n^{a}=o\left(n^{b}\right)$.

Example 1: If $f_{1}=\mathrm{O}\left(g_{1}\right)$ and $f_{2}=\mathrm{O}\left(g_{2}\right)$, then f_{1} / f_{2} may not be $\mathrm{O}\left(g_{1} / g_{2}\right)$.
Proof: Let $f_{1}(n)=f_{2}(n)=1$, for all $n \geq 0$. Then $f_{1}=\mathrm{O}(1)$ and $f_{2}=\mathrm{O}(n)$ but $f_{1} / f_{2}=1 \neq \mathrm{O}(1 / n)$. To see this, consider any $N \geq 0$ and $M \geq 0$. Choose any $n>\max \{N, M\}$. Notice that then $|1|=1>M /|n|$, so $1 \neq \mathrm{O}(1 / n)$.

Example 2: If $a<b$, then $n^{b} \neq \mathrm{O}\left(n^{a}\right)$.
Proof: Suppose $n^{b}=\mathrm{O}\left(n^{a}\right)$, then there exist $N \geq 0$ and $M \geq 0$ so that for all $n \geq N$, $\left|n^{b}\right| \leq M\left|n^{a}\right|$. Choose any $n>\max \left\{N, M^{1 /(b-a)}\right\}$. Notice that then $n^{b-a}>M$, so $\left|n^{b}\right|=n^{b}>M n^{a}=M\left|n^{a}\right|$, and $n^{b} \neq \mathrm{O}\left(n^{a}\right)$.

Example 3: If f is any polynomial of degree k then $f=\mathrm{O}\left(n^{k}\right)$.
Proof-1: Without loss of generality, assume $f(n)=\sum_{i=0}^{k} a_{i} n^{i}$. For all $n \geq 0$ and $0 \leq i \leq k$, $\left|n^{i}\right| \leq\left|n^{k}\right|$ and $\left|a_{i} n^{i}\right| \leq\left|a_{i}\right|\left|n^{k}\right| . \quad$ So for $N=0$ and $M=\sum_{i=0}^{k}\left|a_{i}\right|$, we have $n \geq N$ implies
$|f(n)|=\left|\sum_{i=0}^{k} a_{i} n^{i}\right| \leq \sum_{i=0}^{k}\left|a_{i} n^{i}\right| \leq \sum_{i=0}^{k}\left|a_{i}\right|\left|n^{k}\right| \leq\left(\sum_{i=0}^{k}\left|a_{i}\right|\right) \cdot\left|n^{k}\right|=M\left|n^{k}\right|$
Proof- 2: Without loss of generality, assume $f(n)=\sum_{i=0}^{k} a_{i} n^{i}$. By Theorem 6, $n^{i}=\mathrm{O}\left(n^{k}\right)$, for $0 \leq i \leq k$. By Theorem $1, a_{i} n^{i}=\mathrm{O}\left(n^{k}\right)$ for $0 \leq i \leq k$. Finally, from Corollary 3.2, $f(n)=\sum_{i=0}^{k} a_{i} n^{i}=\mathrm{O}\left(n^{k}\right)$.

