Asymptotic Dominance Theory

- Definition 1: Given the functions f: N→R and g: N→R, f is asymptotically dominated by g if there exist non-negative constants M and N such that for all n≥N, |f(n)| ≤ M|g(n)|. This is denoted by f = O(g).
- Definition 2: Given the functions $f: N \to R$ and $g: N \to R$, f = o(g) if for every positive ε , there exists a non-negative constant N such that for all $n \ge N$, $|f(n)| \le \varepsilon |g(n)|$.

Theorem 1: If f = O(g), then for any constant *s*, sf = O(g).

Proof: By definition, there exist non-negative constants M and N such that for all $n \ge N$, $|f(n)| \le M|g(n)|$. Thus for all $n \ge N$, $|sf(n)| \le |s|M|g(n)|$. Therefore, sf = O(g).

Theorem 2: If $f_1 = O(g_1)$ and $f_2 = O(g_2)$, then $f_1 + f_2 = O(|g_1| + |g_2|)$.

Proof: By definition, there exist non-negative constants M_1 and N_1 such that for all $n \ge N_1$, $|f_1(n)| \le M_1 |g_1(n)|$ and there exist non-negative constants M_2 and N_2 such that for all $n \ge N_2$, $|f_2(n)| \le M_2 |g_2(n)|$. For $n \ge \max\{N_1, N_2\}$ both inequalities hold so $|f_1(n) + f_2(n)| \le |f_1(n)| + |f_2(n)| \le M_1 |g_1(n)| + M_2 |g_2(n)| \le \max\{M_1, M_2\} |g_1(n)| + |g_2(n)|$. Therefore, $f_1 + f_2 = O(|g_1| + |g_2|)$.

Corollary 2.1: If for
$$i = 1, 2, ..., k$$
, $f_i = O(g_i)$, then $\sum_{i=1}^k f_i = O(\sum_{i=1}^k |g_i|)$.

Theorem 3: If $f_1 = O(g_1)$ and $f_2 = O(g_2)$, then $f_1 + f_2 = O(\max\{|g_1|, |g_2|\})$.

Proof: By definition, there exist non-negative constants M_1 and N_1 such that for all $n \ge N_1$, $|f_1(n)| \le M_1|g_1(n)|$ and there exist non-negative constants M_2 and N_2 such that for all $n \ge N_2$, $|f_2(n)| \le M_2|g_2(n)|$. For $n \ge \max\{N_1, N_2\}$ both inequalities hold so $|f_1(n) + f_2(n)| \le |f_1(n)| + |f_2(n)| \le M_1|g_1(n)| + M_2|g_2(n)| \le (M_1 + M_2) \max\{|g_1(n)| + |g_2(n)|\}$. Therefore, $f_1 + f_2 = O(\max\{|g_1|, |g_2|\})$.

Corollary 3.1: If for
$$i = 1, 2, ..., k$$
, $f_i = O(g_i)$, then $\sum_{i=1}^k f_i = O(\max_{i=1,...,k} |g_i|)$.
Corollary 3.2: If for $i = 1, 2, ..., k$, $f_i = O(g)$, then $\sum_{i=1}^k f_i = O(g)$.

Theorem 4: If $f_1 = O(g_1)$ and $f_2 = O(g_2)$, then $f_1 \cdot f_2 = O(g_1 \cdot g_2)$.

Proof: By definition, there exist non-negative constants M_1 and N_1 such that for all $n \ge N_1$, $|f_1(n)| \le M_1|g_1(n)|$ and there exist non-negative constants M_2 and N_2 such that for all $n \ge N_2$, $|f_2(n)| \le M_2|g_2(n)|$. For $n \ge \max\{N_1, N_2\}$ both inequalities hold so $|f_1(n) \cdot f_2(n)| = |f_1(n)| \cdot |f_2(n)| \le M_1|g_1(n)| \cdot M_2|g_2(n)| \le (M_1 \cdot M_2) (|g_1(n)| \cdot |g_2(n)|$. Therefore, $f_1 \cdot f_2 = O(g_1 \cdot g_2)$.

Corollary 4.1: If for
$$i = 1, 2, ..., k$$
, $f_i = O(g_i)$, then $\prod_{i=1}^k f_i = O(\prod_{i=1}^k g_i)$.

Theorem 5: If $f_1 = O(g_1)$, $g_2 = O(f_2)$, and g_2 has no zeros, then $f_1 / f_2 = O(g_1 / g_2)$.

Proof: By definition, there exist non-negative constants M_1 and N_1 such that for all $n \ge N_1$, $|f_1(n)| \le M_1|g_1(n)|$ and there exist non-negative constants M_2 and N_2 such that for all $n \ge N_2$, $|g_2(n)| \le M_2|f_2(n)|$. Notice that since g_2 has no zeros, then neither does f_2 . Inverting this inequality, we obtain that for all $n \ge N_2$, $|1/f_2(n)| \le M_2|1/g_2(n)|$. For $n \ge \max\{N_1, N_2\}$ both inequalities hold so $|f_1(n)/f_2(n)| = |f_1(n)| \cdot |1/f_2(n)| \le M_1|g_1(n)| \cdot M_2|1/g_2(n)| \le (M_1 \cdot M_2) (|g_1(n)|/|g_2(n)|$. Therefore, $f_1/f_2 = O(g_1/g_2)$.

Theorem 6: If $a \le b$, then $n^a = O(n^b)$

Proof: For $n \ge 0$, $n^{-(b-a)} \le n^0 = 1$, and $|n^a| = |n^{-(b-a)} n^b| = |n^{-(b-a)}| |n^b| \le 1 \cdot |n^b|$. Therefore, $n^a = O(n^b)$.

Theorem 7: If a < b, then $n^a = o(n^b)$

Proof: Given any $\varepsilon > 0$, let $N = (1/\varepsilon)^{1/(b-a)}$. Notice then for $n \ge N = (1/\varepsilon)^{1/(b-a)}$, $n^{b-a} \ge 1/\varepsilon$, and $n^{-(b-a)} \le \varepsilon$. So $|n^a| = |n^{-(b-a)} n^b| = |n^{-(b-a)}| |n^b| \le \varepsilon |n^b|$. Therefore, $n^a = o(n^b)$.

Example 1: If $f_1 = O(g_1)$ and $f_2 = O(g_2)$, then f_1 / f_2 may not be $O(g_1 / g_2)$.

Proof: Let $f_1(n) = f_2(n) = 1$, for all $n \ge 0$. Then $f_1 = O(1)$ and $f_2 = O(n)$ but $f_1 / f_2 = 1 \ne O(1/n)$. To see this, consider any $N \ge 0$ and $M \ge 0$. Choose any $n > \max\{N, M\}$. Notice that then |1| = 1 > M / |n|, so $1 \ne O(1/n)$.

Example 2: If a < b, then $n^b \neq O(n^a)$.

Proof: Suppose $n^b = O(n^a)$, then there exist $N \ge 0$ and $M \ge 0$ so that for all $n \ge N$, $|n^b| \le M |n^a|$. Choose any $n > \max\{N, M^{1/(b-a)}\}$. Notice that then $n^{b-a} > M$, so $|n^b| = n^b > M n^a = M |n^a|$, and $n^b \ne O(n^a)$.

Example 3: If *f* is any polynomial of degree *k* then $f = O(n^k)$.

Proof-1: Without loss of generality, assume $f(n) = \sum_{i=0}^{k} a_i n^i$. For all $n \ge 0$ and $0 \le i \le k$, $|n^i| \le |n^k|$ and $|a_i n^i| \le |a_i| |n^k|$. So for N = 0 and $M = \sum_{i=0}^{k} |a_i|$, we have $n \ge N$ implies $|f(n)| = \left|\sum_{i=0}^{k} a_i n^i\right| \le \sum_{i=0}^{k} |a_i n^i| \le \sum_{i=0}^{k} |a_i| |n^k| \le \left(\sum_{i=0}^{k} |a_i|\right) \cdot |n^k| = M |n^k|$ **Proof- 2:** Without loss of generality, assume $f(n) = \sum_{i=0}^{k} a_i n^i$. By Theorem 6, $n^i = O(n^k)$, for $0 \le i \le k$. By Theorem 1, $a_i n^i = O(n^k)$ for $0 \le i \le k$. Finally, from Corollary 3.2,

for $0 \le i \le k$. By Theorem 1, $a_i n^i = O(n^k)$ for $0 \le i \le k$. Finally, from Corollary 3 $f(n) = \sum_{i=0}^k a_i n^i = O(n^k).$