Examination 1 Solutions
 CS 336

1. [5] For $n \geq 3$, how many diagonals does a convex polygon with n extreme points have? (Consider a convex polygon given by extreme points $\left\langle P_{1}, P_{2}, \ldots, P_{n}\right\rangle$ in counterclockwise order A "diagonal" is a line segment connecting two non-adjacent extreme points.)

2. a. [10] Present a combinatorial argument that for all $n \geq 1$:

$$
(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1=\frac{(2 n)!}{n!2^{n}}
$$

Consider the set of all partitions of a set of cardinality $2 n$ into n pairs. For the left side, begin with any permutation of the $2 n$ elements. The first element on the permutation is in some pair and there are $2 n-1$ choices for its pair-mate.
Removing these two from the permutation, the next element permutation is also in some pair and there are $2 n-3$ choices for its pair-mate. The process continues until there are just two elements left in the permutation, and they form the last pair. This yields $(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1$ different such partitions. Now consider the right hand side. There are $(2 n)!$ different permutations of the of the $2 n$
elements. Pair the first element with the second, the third with the fourth, etc. This yields a partition into n pairs. However, the order among the n pairs is irrelevant to the partition and thus for every array of pairs there are 2^{n} different permutations. Lastly, the order among the pairs, is also irrelevant, so a set of pairs could be arranged in $n!$ different orders. Thus the number of partitions into pairs that ignores order within and among pairs is $\frac{(2 n)!}{n!2^{n}}$ and this must equal
$(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1$.
b. [10] Present a combinatorial argument that for all nonegative integers k and n satisfying $k \leq n-2$

$$
\binom{n+2}{k}=\binom{n}{k}+2\binom{n}{k-1}+\binom{n}{k-2}
$$

Let set A have cardinality n and b and c be distinct elements not contained in A. Consider the subsets of $A \cup\{b\} \cup\{c\}$ of cardinality k. For the left hand side, we recognize that $A \cup\{b\} \cup\{c\}$ has cardinality $n+2$, so there are $\binom{n+2}{k}$ such subsets. Alternatively, consider that a subset wither has all k elements coming from A, exactly $k-1$ elements coming from A, or A, exactly $k-2$ elements coming from A. If all k elements come from A, there are $\binom{n}{k}$. If exactly $k-1$ elements come from A, there are $\binom{n}{k-1}$ ways to select those elements and then two choices, b or , to complete the subset. If exactly $k-2$ elements come from A, there are $\binom{n}{k-2}$ ways to select those elements and then both b and must be selected to complete the subset. The total is $\binom{n}{k}+2\binom{n}{k-1}+\binom{n}{k-2}$ and this must equal $\binom{n+2}{k}$.
3. [15] How many partitions are there of a set of 45 elements into a subset of cardinality 3 , six subsets of cardinality 4 , and three subsets of cardinality 6 ?

There are $\binom{45}{3}$ ways to select the elements for the subset of cardinality 3 .
Removing those leaves 42 elements, and there are $\left(\begin{array}{cccccc} & 42 & & \\ 4 & 4 & 4 & 4 & 4 & 4\end{array}\right)$ ways to select the elements for the six subsets of cardinality 4 . However, there is no order amongst these subsets and there are actually 6 ! ways to reorder the subsets, so this has been over counted by a factor of $6!$. Finally, removing those leaves 18 elements, and there are $\left(\begin{array}{ccc} & 18 & \\ 6 & 6 & 6\end{array}\right)$ ways to select the elements for the tree subsets of cardinality 6 . However, there is no order amongst these subsets and there are 3 ! ways to reorder the subsets, so this has been over counted by a factor of 3 !. The

number of such partitions is then $\frac{\binom{45}{3}\left(\right.$| 42 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 4 | 4 | 4 | 4 | 4 |\()\left(\begin{array}{ccc}18

6 \& 6 \& 6\end{array}\right)}{6!3!}\). This can also be written $\frac{\left(\right.$| 45 | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 |$)}{6!3!}$.

4. [15] For $n \geq 1$, what is the value of $\sum_{i_{1}=0}^{n}\left(\sum_{i_{2}=0}^{n-i_{1}}\left(\sum_{i_{3}=0}^{n-i_{1}-i_{2}} 1\right)\right)$? Present a combinatorial argument: determine the value of the expression, then defend it by establishing a model and counting it. (Hint: Define $i_{4}=n-i_{1}-i_{2}-i_{3}$ and then think about putting balls into bins.)

The expression adds one for every ordered triple $\left\langle i_{1}, i_{2}, i_{3}\right\rangle$ of non-negative integers so that $i_{1}+i_{2}+i_{3} \leq n$. Letting $i_{4}=n-i_{1}-i_{2}-i_{3}$, this is the same as adding one for every ordered four-tuple $<i_{1}, i_{2}, i_{3}, i_{4}>$ of non-negative integers so that $i_{1}+i_{2}+i_{3}+i_{4}=n$. That however, is the number of ways of tossing n balls into four bins which is $\binom{n+3}{3}$.
5. [10] Consider strings of four a and four $b s$. Assume all such strings are equally likely. What is the probability that two or more as precede all of the $b s$.

A string has length 8 and is determined by the 4 positions for the as, thus there are $\binom{8}{4}$ equally likely strings. Either exactly two as precede all of the $b s$, exactly three as precede all of the $b s$, or all four as precede all of the $b s$. If exactly two as precede all of the $b s$, the string begins $a a b$ and there are 5 remaining positions to contain the 2 as. Thus $\binom{5}{2}$ such strings. If exactly three as precede all of the $b s$, the string begins aaab and there are 4 remaining positions to contain the last a. Thus there are $\binom{4}{1}$ such strings. Lastly there is only one string in which all of the as precede all of the $b s$. In total there are $\binom{5}{2}+\binom{4}{1}+1=15$ strings in which two or more as precede all of the b s. The probability of having such a string is $\frac{15}{\binom{8}{4}}$
6. [10] Consider rolls of a pair of six-sided dice assuming all possible order pairs of outcomes are equally likely. What is the probability that the sum of values shown on the dice is 8 given that either of the dice shows a 2 ?

There are $6^{2}=36$ equally likely rolls of the dice. If the first die shows a 2 , there are 6 different values for the second die (one of which is 2). If the second die shows a 2 , there are 6 different values for the first die (one of which is 2). Thus, $6+6-1=11$ different rolls have at least one die with a value of 2 . Of these, there are the only way to get a total of 8 is with $(2,6)$ or $(6,2)$. Thus, the probability that the sum of values shown on the dice is 8 given that either of the dice shows a 2 is $\frac{2}{11}$.

