Examination 2 Solutions

1. [20] Using only Definition 2^{\prime}, prove that the set of infinite strings of 0 s and 1 s is infinite.

Let $S=$ set of infinite strings of 0 s and 1 s . For $s \in S$, define $f: S \rightarrow S$ by $f(s)=0 \mid s$ (i.e. the infinite string consisting of 0 concatenated with s). For $s, t \in S$, if $s \neq t$, then $f(s)=0|s \neq 0| t=f(t)$, so f is one-to-one. Let $u=111 \ldots$ the string of all 1s. Since for all $s \in S$ the first element of $f(s)$ is a 0 , there is no $s \in S$ such that $f(s)=u$. We have then that f maps S into $S \sim\{u\}$, which is a proper subset of S, and by Definition 2', S is infinite.
2. [20] Prove the set of intervals $\{[a, b] \mid 0 \leq a \leq b \leq 1\}$ is uncountably infinite.

Consider $g:[0,1] \rightarrow\{[a, b] \mid 0 \leq a \leq b \leq 1\}$, defined by $g(x)=[0, x]$, for $x \in[0,1]$. If $x \neq y$, then $g(x)=[0, x] \neq[0, y]=g(y)$, so g is one-to-one, and by Theorems 5 and $11,\{[a, b] \mid 0 \leq a \leq b \leq 1\}$ is uncountably infinite.
3. [20] Let $F P=\{$ permutations of $\{0, \ldots, n\} \mid n \in \mathbb{N}\}$. Prove that $F P$ is countably infinite.

Since for every $n \in \mathbb{N}$ there are $(n+1)$! permutations of $\{0, \ldots, n\}$, the number of permutations is finite and $F P$ is the union of a countably infinite collection of finite sets. By Theorem 9, FP is countable. Define $f: \mathbb{N} \rightarrow F P$ by $f(n)=\langle 0,1, \ldots, n\rangle$. For natural numbers n and m, if $n \neq m$, then

$$
f(n)=\langle 0,1, \ldots, n\rangle \neq\langle 0,1, \ldots, m\rangle=f(m)
$$

so f is one-to-one and by Theorem $4, F P$ is infinite and thus countably infinite.
4. [20] a. By induction prove that $n \geq 1, n^{n-1} \geq n$!.

For $n=1$ we have $n^{n-1}=1^{0}=1 \geq 1=1$!. If we assume for some $n \geq 1, n^{n-1} \geq n$!, then we conclude:

$$
(n+1)^{(n+1)-1}=(n+1)^{n}=(n+1)(n+1)^{n-1} \geq(n+1) n^{n-1} \geq(n+1) n!=(n+1)!.
$$

So by induction, we have $n \geq 1, n^{n-1} \geq n$! for all $n \geq 1$.
b. Using part a, prove that $n^{n} \neq \mathrm{O}(n!)$. (You may ignore part a if you have another way of proving this and you may use part a even if you weren't able to prove it above.)

Suppose there exist M and N so that for $n \geq N,\left|n^{n}\right| \leq M|n!|$. If we chose $n=\max \{N,\lceil M\rceil+1)\}$, we have $n \geq N$ and $n>M$

$$
\left|n^{n}\right|=n^{n}=n \cdot n^{n-1} \geq n \cdot n!>M \cdot n!=M|n!| .
$$

This is a contradiction, so $n^{n} \neq \mathrm{O}(n!)$.
5. [20] Prove that $2^{n}=o(n!)$. (Hint: $\left.\prod_{i=1}^{n} 2=\prod_{i=1}^{n} \frac{2}{i} i\right)$

Given any $\varepsilon>0$, let $N=\left\lceil\frac{2}{\varepsilon}\right\rceil$. Thus for $n \geq N$, we have $n \geq \frac{2}{\varepsilon}$ and $\varepsilon \geq \frac{2}{n}$, so $\left|2^{n}\right|=2^{n}=\prod_{i=1}^{n} 2=\prod_{i=1}^{n} \frac{2}{i} i=\prod_{i=1}^{n} \frac{2}{i} \cdot \prod_{i=1}^{n} i \leq \frac{2}{n} \prod_{i=1}^{n} i \leq \varepsilon \prod_{i=1}^{n} i=\varepsilon|i!|$. We conclude $2^{n}=o(n!)$.
6. [20] Prove that for $k \geq 0, \sum_{i=0}^{k} a_{i} n^{i}=\mathrm{O}\left(n^{k}\right)$.

By Theorem 6, $0 \leq i \leq k, n^{i}=\mathrm{O}\left(n^{k}\right)$. By Theorem 1, $0 \leq i \leq k, a_{i} n^{i}=\mathrm{O}\left(n^{k}\right)$. By Corollary 3.2, $k \geq 0, \sum_{i=0}^{k} a_{i} n^{i}=\mathrm{O}\left(n^{k}\right)$.

