Examination 2 Solutions

CS 336

1. [20] Using only Definition 2', prove that the set of infinite strings of 0s and 1s is infinite.

Let $S = \text{set of infinite strings of 0s and 1s. For } s \in S$, define $f: S \to S$ by f(s) = 0 | s (i.e. the infinite string consisting of 0 concatenated with s). For $s, t \in S$, if $s \neq t$, then $f(s) = 0 | s \neq 0 | t = f(t)$, so f is one-to-one. Let u = 111... the string of all 1s. Since for all $s \in S$ the first element of f(s) is a 0, there is no $s \in S$ such that f(s) = u. We have then that f maps S into $S \sim \{u\}$, which is a proper subset of S, and by Definition 2', S is infinite.

2. [20] Prove the set of intervals $\{[a,b]| 0 \le a \le b \le 1\}$ is uncountably infinite.

Consider $g:[0,1] \rightarrow \{[a,b]| 0 \le a \le b \le 1\}$, defined by g(x) = [0,x], for $x \in [0,1]$. If $x \ne y$, then $g(x) = [0,x] \ne [0,y] = g(y)$, so g is one-to-one, and by Theorems 5 and 11, $\{[a,b]| 0 \le a \le b \le 1\}$ is uncountably infinite.

3. [20] Let $FP = \{ permutations of \{0, ..., n\} \mid n \in \mathbb{N} \}$. Prove that FP is countably infinite.

Since for every $n \in \mathbb{N}$ there are (n + 1)! permutations of $\{0, ..., n\}$, the number of permutations is finite and *FP* is the union of a countably infinite collection of finite sets. By Theorem 9, *FP* is countable. Define $f : \mathbb{N} \to FP$ by $f(n) = \langle 0, 1, ..., n \rangle$. For natural numbers n and m, if $n \neq m$, then

$$f(n) = \langle 0, 1, \dots, n \rangle \neq \langle 0, 1, \dots, m \rangle = f(m)$$

so f is one-to-one and by Theorem 4, FP is infinite and thus countably infinite.

4. [20] a. By induction prove that $n \ge 1, n^{n-1} \ge n!$.

For n = 1 we have $n^{n-1} = 1^0 = 1 \ge 1 = 1!$. If we assume for some $n \ge 1, n^{n-1} \ge n!$, then we conclude:

 $(n+1)^{(n+1)-1} = (n+1)^n = (n+1)(n+1)^{n-1} \ge (n+1)n^{n-1} \ge (n+1)n! = (n+1)!$. So by induction, we have $n \ge 1, n^{n-1} \ge n!$ for all $n \ge 1$.

b. Using part a, prove that $n^n \neq O(n!)$. (You may ignore part a if you have another way of proving this and you may use part a even if you weren't able to prove it above.)

Suppose there exist M and N so that for $n \ge N, |n^n| \le M |n!|$. If we chose $n = \max\{N, \lceil M \rceil + 1\}$, we have $n \ge N$ and n > M $|n^n| = n^n = n \cdot n^{n-1} \ge n \cdot n! > M \cdot n! = M |n!|$.

This is a contradiction, so $n^n \neq O(n!)$.

5. [20] Prove that
$$2^n = o(n!)$$
. (Hint: $\prod_{i=1}^n 2 = \prod_{i=1}^n \frac{2}{i}i$)
Given any $\varepsilon > 0$, let $N = \left\lceil \frac{2}{\varepsilon} \right\rceil$. Thus for $n \ge N$, we have $n \ge \frac{2}{\varepsilon}$ and $\varepsilon \ge \frac{2}{n}$, so
 $|2^n| = 2^n = \prod_{i=1}^n 2 = \prod_{i=1}^n \frac{2}{i}i = \prod_{i=1}^n \frac{2}{i} \cdot \prod_{i=1}^n i \le \frac{2}{n} \prod_{i=1}^n i \le \varepsilon \prod_{i=1}^n i = \varepsilon |i!|$. We conclude
 $2^n = o(n!)$.

6. **[20]** Prove that for $k \ge 0$, $\sum_{i=0}^{k} a_i n^i = O(n^k)$. By Theorem 6, $0 \le i \le k, n^i = O(n^k)$. By Theorem 1, $0 \le i \le k, a_i n^i = O(n^k)$. By Corollary 3.2, $k \ge 0$, $\sum_{i=0}^{k} a_i n^i = O(n^k)$.