Examination 2 Solutions

CS 336

1. [20] Using only Definition 2', prove that the set of finitely long strings using characters from $\{A, B, C, \ldots, Z, a, b, c, \ldots, z\}$ is infinite.

Let $S=$ set of finitely long strings of $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{Z}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{z}\}$. For $s \in S$, define $f: S \rightarrow S$ by $f(s)=A \mid s$ (i.e. the string consisting of A concatenated with $s)$. For $s, t \in S$, if $s \neq t$, then $f(s)=A|s \neq A| t=f(t)$, so f is one-to-one. Let $u=\langle B\rangle$. Since for all $s \in S$ the first element of $f(s)$ is an A, there is no $s \in S$ such that $f(s)=u$. We have then that f maps S into $S \sim\{u\}$, which is a proper subset of S, and by Definition 2', S is infinite.
2. [20] Consider this theorem (that relies upon the Axiom of Choice):

If $f: A \longrightarrow$ onto B, then there exists a subset \hat{A} of A such that $f: \hat{A} \xrightarrow[\text { onto }]{1-1} B$.
Use his theorem to prove: If $f: A \longrightarrow$ onto B, and B is infinite then A is infinite.
If $f: A \longrightarrow$ onto B, then there exists a subset \hat{A} of A such that $f: \hat{A} \xrightarrow[\text { onto }]{1-1} B$ thus $f^{-1}: B \xrightarrow[\text { onto }]{1-1} \hat{A}$. If B is infinite then by Theorem $4 \hat{A}$ is infinite and by Theorem $3 A$ is infinite.
3. [20] Is the set of infinitely long strings using characters from $\{A, B, C, \ldots, Z, a, b, c, \ldots$, $z\}$ finite, countably infinite, or uncountably infinite? Prove your claim.

The set is uncountably infinite. Let \mathbb{S} denote the set of infinitely long strings using characters from $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{Z}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots . \mathrm{z}\}$ and B denote the set of infinitely long bit strings. Define $f: \mathrm{B} \rightarrow \mathbb{S}$ by : f(s) for a bit string s replaces every 0 in the string with the character A and every 1 in the string with the character B. This function is one-to-one since if s and t are bit strings and $s \neq t$, then s and t must differ in some position k, (one having a 0 and one having a 1) but then $f(s)$ and $f(t)$ must differ in that same position k, (one having an A and one having a B). Thus, $f(s) \neq f(t)$ and f is one-to-one. The set \mathbf{B} is uncountably infinite by Theorem and thus, by Theorem , \mathbb{S} is uncountably infinite.
4. [20] Prove that $\sqrt{n^{3}+1}=o\left(n^{2}\right)$.

Given any $\varepsilon>0$, let $N=\max \left\{1,2 / \varepsilon^{2}\right\}$. Notice then for $n \geq N$, we have $n \geq 1$ and $n \geq 2 / \varepsilon^{2}$. Thus $\frac{2}{n} \leq \varepsilon^{2}$ and $\frac{n^{3}+1}{n^{4}} \leq \frac{2 n^{3}}{n^{4}} \leq \varepsilon^{2}$. So $\frac{\sqrt{n^{3}+1}}{n^{2}}=\sqrt{\frac{n^{3}+1}{n^{4}}} \leq \varepsilon$ and $\left|\sqrt{n^{3}+1}\right|=\sqrt{n^{3}+1} \leq \varepsilon n^{2}=\varepsilon\left|n^{2}\right|$. Therefore, $\sqrt{n^{3}+1}=o\left(n^{2}\right)$.
5. [20] Employing induction and Theorem 4, prove that for $k \geq 1$, if for $i=1,2, \ldots, k$, $f_{i}=\mathbf{O}(g)$, then $\prod_{i=1}^{k} f_{i}=\mathbf{O}\left(g^{k}\right)$.

For $k=1$, we have $\prod_{i=1}^{1} f_{i}=f_{1}=\mathrm{O}(g)=\mathrm{O}\left(g^{1}\right)$ by hypothesis. Now assume $\prod_{i=1}^{k} f_{i}=\mathrm{O}\left(g^{k}\right) \quad$ and \quad consider $\quad \prod_{i=1}^{k+1} f_{i}=\prod_{i=1}^{k} f_{i} \cdot f_{k+1}$. Since $\quad \prod_{i=1}^{k} f_{i}=\mathrm{O}\left(g^{k}\right) \quad$ and $f_{k+1}=\mathrm{O}(g)$, Theorem 4 guarantees that $\prod_{i=1}^{k+1} f_{i}=\mathrm{O}\left(g^{k} \cdot g\right)=\mathrm{O}\left(g^{k+1}\right)$.
6. [20] Prove that polynomials are asymptotically dominated by their largest power: That is, for $k \geq 0, \sum_{i=0}^{k} a_{i} n^{i}=\mathrm{O}\left(n^{k}\right)$.

By Theorem 6, $0 \leq i \leq k, n^{i}=\mathrm{O}\left(n^{k}\right)$. By Theorem 1, $0 \leq i \leq k, a_{i} n^{i}=\mathrm{O}\left(n^{k}\right)$. By Corollary 3.2, $k \geq 0, \sum_{i=0}^{k} a_{i} n^{i}=\mathrm{O}\left(n^{k}\right)$.

