## **Final Examination**

## **CS 336**

- 1. The important issue is the logic you used to arrive at your answer.
- 2. Use extra paper to determine your solutions then neatly transcribe them onto these sheets.
- 3. Do not submit the scratch sheets. However, all of the logic necessary to obtain the solution should be on these sheets.
- 4. Comment on all logical flaws and omissions and enclose the comments in boxes
- 1. a. [5] How many strings of length  $n \ge 0$  using characters a, b or c with possible repetition, have exactly  $n_a$  as and  $n_b$  bs (where  $n_a + n_b \le n$ )?
- **b.** [10] How many strings of length  $n \ge 0$  using characters a, b or c with possible repetition, have either exactly  $n_a$  as or exactly  $n_b$  bs or both (where  $n_a + n_b \le n$ )?
- **2.** [10] For  $n \ge 1$ , how many four-tuples  $\langle i, j, k, l \rangle$  of non-negative values i, j, k, and l satisfy  $i + j + k + l \le n$ ? (Hint: First consider the situation i + j + k + l = n and then think about m = n (i + j + k + l).)
- 3. a. [10] Using a combinatorial argument, prove that for  $n \ge 1$  and  $m \ge 2$ :

$$\sum_{k=0}^{n} \binom{n}{k} (m-1)^k = m^n$$

**b.** [10] Using a combinatorial argument, prove that for  $n \ge k \ge 0$ :

$$\binom{n}{k}k!(n-k)! = n!$$

- 4. a. [10] For  $3 \le m \le n$ , what is the probability that a string of length m selected without repetition from  $\{1,2,...,n\}$  contains the substring  $\langle 1,2,3\rangle$ ? (You may assume all strings of length m selected without repetition from  $\{1,2,...,n\}$  are equally probable.)
- 5. [10] Using definition 2' (and no cardinality theorems) show that the set of reciprocals of positive integers (i.e.,  $\{1/p | p \in \mathbb{Z} \land p > 0\}$ ) is infinite.

**6. a. [10]** Let  $A = \{a, b, c, ..., z, A, B, C, ..., Z\}$  and and let B be the set of finite strings from A, that is  $B = \{\langle \alpha_1, \alpha_2, ..., \alpha_n \rangle | n \in \mathbb{N} \land \alpha_i \in A \text{ for } i = 1, 2, ..., n\}$ . Is the set B finite, countably infinite, or uncountably infinite? Prove your claim.

**b. [5]** Prove that the set of finite sets of real values from [0,1]  $C = \{\{x_1, x_2, ..., x_n\} \mid n \in \mathbb{N} \land x_i \in [0,1] \text{ for } i = 1, 2, ..., n\}$  is uncountably infinite.

7. [10] Prove that if  $f_1 = O(g_1)$  and  $f_2 = o(g_2)$ , then  $f_1 f_2 = o(g_1 g_2)$ .

**8. [10]**. For a fixed value of 
$$k$$
, define  $f(n) = \binom{n}{k}$ . Prove that  $f(n) = O(n^k)$ 

9. [10] Assuming x and y are integer variables, prove correct with respect to precondition " $x \ge 0$  and y is defined" and postcondition " $x + y \ne 11$ ":

```
if y > 2 then x := y+6 if x < 10 then y := 1 endif else x := y+4 endif
```

10. a. [10] Prove the following code is partially correct with respect to precondition " $n \ge 0$ " and postcondition " $s = \sum_{i=1}^{n} a_i b_i$ " (assume k and s are integer variables and a and b are integer arrays of length at least n.):

$$k := 1$$
  
 $s := 0$   
while  $k \le n$  do  
 $s := s + (a[k]*b[k])$   
 $k := k+1$   
endwhile

Be explicit about your loop invariant.

...b. [5] Prove that the loop terminates.

11. a. [10] Determine the weakest precondition with respect to the postcondition "w > 0" for the following (assume w, z, y, and x are integer variables and that y and z are defined):

```
x := y
y := x
x := z
y := x
w := x+y+z
```

- **b.** [5] For the same piece of code, determine the weakest precondition with respect to the postcondition "wy = 12"
- 12. [10] Determine the weakest precondition with respect to the postcondition "y = 1" for the following code (assume z, y, and x are integer variables and that x and z are defined):