1. The important issue is the logic you used to arnive at your answer.
2. Use extra paper to determine your solutions then neatly transcribe them onto these sheets.
3. Do not submit the scratch sheets. However, all of the logic necessary to obtain the solution should be on these sheets.
4. Comment on all logical flaws and omissions and enclose the comments in boxes
5. a. [5] How many strings of length $n \geq 0$ using characters a, b or c with possible repetition, have exactly n_{a} as and n_{b} bs (where $n_{a}+n_{b} \leq n$)?

Into the n positions of the string, there are $\binom{n}{n_{a}}$ selections for the positions of the n_{a} as and, given that, $\binom{n-n_{a}}{n_{b}}$ selections for the positions of the n_{b} bs. Once the positions for the as and bs are fixed, the positions for the cs is determined. Thus there are $\binom{n}{n_{a}}\binom{n-n_{a}}{n_{b}}=\left(\begin{array}{c}n \\ n_{a} \\ n_{b}\end{array}\right)$ such strings.
b. [10] How many strings of length $n \geq 0$ using characters a, b or c with possible repetition, have either exactly n_{a} as or exactly n_{b} bs or both (where $n_{a}+n_{b} \leq n$)?

For the case of exactly n_{a} as, into the n positions of the string, there are $\binom{n}{n_{a}}$ selections for the positions of the n_{a} as and, given that, $2^{n-n_{a}}$ selections for the positions of the bs and \propto. For the case of exactly n_{b} bs, into the n positions of the string, there are $\binom{n}{n_{b}}$ selections for the positions of the n_{b} bs and, given that, $2^{n-n_{b}}$ selections for the positions of the as and ς. From above, we have that there are $\binom{n}{n_{a}}\binom{n-n_{a}}{n_{b}}$ strings with exactly n_{a} as and n_{b} bs, thus there are $\binom{n}{n_{a}}+\binom{n}{n_{b}}-\binom{n}{n_{a}}\binom{n-n_{a}}{n_{b}}$ strings with exactly n_{a} as or exactly n_{b} bs or both.
2. [10] For $n \geq 1$, how many four-tuples $\langle i, j, k, l\rangle$ of non-negative values i, j, k, and l satisfy $i+j+k+l \leq n$? (Hint: First consider the situation $i+j+k+l=n$ and then think about $m=n-(i+j+k+l)$.)

Consider placing n indistinguishable balls into five bins labeled i, j, k, l, and m. Since the number of balls in the m bin is non-negative, each such placement corresponds to a single selection of a four-tuple $\langle i, j, k, l\rangle$ of non-negative values i, j, k, and l satisfying $i+j+k+l \leq n$. There are $\binom{n+4}{4}$ such placements of n indistinguishable balls into five bins, therefore the same number of four-tuples $\langle i, j, k, l\rangle$ of non-negative values i, j, k, and l satisfying $i+j+k+l \leq n$.
3. a. [10] Using a combinatorial argument, prove that for $n \geq 1$ and $m \geq 2$:

$$
\sum_{k=0}^{n}\binom{n}{k}(m-1)^{n-k}=m^{n}
$$

Consider strings of length n selected from the integers $\{1,2, \ldots, m\}$ with repetition allowed. For each of n positions there are m choices, so there are m^{n} such strings. Altematively, let k indicate the number of copies of m in the string. The value of k varies from 0 to n. For a fixed value of k there are $\binom{n}{k}$ selections for the placement of the $m s$ and then $(m-1)$ choices for the integers $\{1,2, \ldots, m-1\}$ in each of the $n-k$ remaining positions. Thus there are $\binom{n}{k}(m-1)^{n-k}$ such strings with k copies of m, and $\sum_{k=0}^{n}\binom{n}{k}(m-1)^{n-k}$ overall. This must equal m^{n}.
b. [10] Using a combinatorial argument, prove that for $n \geq k \geq 0$:

$$
\binom{n}{k} k!(n-k)!=n!
$$

Consider permutations of length n selected from the integers $\{1,2, \ldots, n\}$. There are n ! such permutations. Alternatively, let k satisfy $n \geq k \geq 0$ and for any permutation first select the positions to be occupied by $\{1,2, \ldots, k\}$. There are $\binom{n}{k}$ such selections. Now permute the values $\{1,2, \ldots, k\}$ - there are k ! such permutations. Finally, permute the $n-k$ values $\{k+1, k+2, \ldots, n\}$, which can be done in $(n-k)$! ways, and place them into the positions of the permutation notoccupied by
the values from $\{1,2, \ldots, k\}$. Thus, there are $\binom{n}{k} k!(n-k)!$ such permutations and this must equal $n!$.
4. a. [10] For $3 \leq m \leq n$, what is the probability that a string of length m selected without repetition from $\{1,2, \ldots, n\}$ contains the substring $\langle 1,2,3\rangle$? (You may assume all strings of length m selected without repetition from $\{1,2, \ldots, n\}$ are equally probable.)

There are $\frac{n!}{(n-m)!}$ such equally probable strings. To count the number containing the substring $\langle 1,2,3\rangle$, consider that we first position the substring $\langle 1,2,3\rangle$. There are $m-2$ positions for the initial 1 , so there are $m-2$ positions for the substring. The remainder of the $m-3$ positions of the string consists of characters from $\{4,5, \ldots, n\}$ of size $n-3$. Thus, there are $(m-2) \frac{(n-3)!}{((n-3)-(m-3))!}$ strings of length m selected without repetition from $\{1,2, \ldots, n\}$ containing the substring $\langle 1,2,3\rangle$. The probability of such a string is $(m-2) \frac{(n-3)!}{(n-m)!} / \frac{n!}{(n-m)!}$. (This value equals $\frac{m-2}{n(n-1)(n-2)}$ and an alternative argument results in this expression directly.)
5. [10] Using definition 2^{\prime} (and no cardinality theorems) show that the set of reciprocals of positive integers (i.e., $\{1 / p \mid p \in \mathbb{Z} \wedge p>0\}$) is infinite.

Consider the mapping $f:\{1 / p \mid p \in \mathbb{Z} \wedge p>0\} \rightarrow\{1 / p \mid p \in \mathbb{Z} \wedge p>0\}$, defined by $f\left(\frac{1}{p}\right)=\frac{1}{p+1}$, for $p \in \mathbb{Z}$ and $p>0$. Since for $\frac{1}{p_{1}} \neq \frac{1}{p_{2}}, p_{1} \neq p_{2}$ then $p_{1}+1 \neq p_{2}+1$ and $f\left(p_{1}\right)=\frac{1}{p_{1}} \neq \frac{1}{p_{2}}=f\left(p_{2}\right)$. The mapping is one-to-one. Lastly $1=\frac{1}{1} \in\{1 / p \mid p \in \mathbb{Z} \wedge p>0\}$ but if $f\left(\frac{1}{p}\right)=\frac{1}{p+1}=1$ then $p=0$, but $0 \notin\{1 / p \mid p \in \mathbb{Z} \wedge p>0\}$, so no value exists such that $f\left(\frac{1}{p}\right)=1$ and f maps into a strict subset of $\{1 / p \mid p \in \mathbb{Z} \wedge p>0\}$. Therefore by Definition 2^{\prime}
$\{1 / p \mid p \in \mathbb{Z} \wedge p>0\}$ is infinite.
6. a. [10] Let $A=\{a, b, c, \ldots, z, A, B, C, \ldots, Z\}$ and and let B be the set of finite strings from A, that is $B=\left\{\left\langle\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right\rangle \mid n \in \mathbb{N} \wedge \alpha_{i} \in A\right.$ for $\left.i=1,2, \ldots, n\right\}$. Is the set B finite, countably infinite, or uncountably infinite? Prove your claim.
B is countably infinite. For $n \in \mathbb{N}$ define B_{n} to be the strings from A of length exactly n (i.e. $B_{n}=\left\{\left\langle\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right\rangle \mid \alpha_{i} \in A\right.$ for $\left.i=1,2, \ldots, n\right\}$). The cardinality of B_{n} is 52^{n} and thus B_{n} is finite. However $B=\bigcup_{n \in \mathbb{N}} B_{n}$ thus by Theorem B is countable. B contains the subset $\{\rangle,\langle a\rangle,\langle a a\rangle, \ldots\}$ (i.e. the set of strings of a s of length n for every $n \in \mathbb{N}$). This set is infinite, thus by Theorem B is infinite. We conclude B is countably infinite
b. [5] Prove that the set of finite sets of real values from [0,1]
$C=\left\{\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \mid n \in \mathbb{N} \wedge x_{i} \in[0,1]\right.$ fori $\left.=1,2, \ldots, n\right\}$ is uncountably infinite.
Consider the mapping $f:[0,1] \rightarrow C$ defined by $f(x)=\{x\}$. Since for $x_{1} \neq x_{2}$, $f\left(x_{1}\right)=\left\{x_{1}\right\} \neq\left\{x_{2}\right\}=f\left(x_{2}\right)$. The mapping is one-to-one. By Theorem 11, C is uncountably infinite.
7. [10] Prove that if $f_{1}=\mathrm{O}\left(g_{1}\right)$ and $f_{2}=\mathrm{o}\left(g_{2}\right)$, then $f_{1} f_{2}=\mathrm{o}\left(g_{1} g_{2}\right)$.

There exist M and N_{1} so that for $n \geq N_{1},\left|f_{1}(n)\right| \leq M\left|g_{1}(n)\right|$. Given $\varepsilon>0$, there exists N_{2} so that for $n \geq N_{2},\left|f_{2}(n)\right| \leqslant \frac{\varepsilon}{M}\left|g_{2}(n)\right|$, thus for $n \geq \max \left\{N_{1}, N_{2}\right\},\left|f_{1}(n) f_{2}(n)\right| \leq M\left|g_{1}(n)\right| \frac{\varepsilon}{M}\left|g_{2}(n)\right|=\varepsilon\left|g_{1}(n) g_{2}(n)\right|$, so $f_{1} f_{2}=\mathbf{o}\left(g_{1} g_{2}\right)$.
8. [10] . For a fixed value of k, define $f(n)=\binom{n}{k}$. Prove that $f(n)=\mathrm{O}\left(n^{k}\right)$

For $n \geq k, \left.\left|f(n) \vDash\binom{n}{k}=\frac{1}{k!} n \cdot(n-1) \cdots(n-k+1) \leq \frac{1}{k!} n^{k}=\frac{1}{k!}\right| n^{k} \right\rvert\,$, so $f(n)=\mathrm{O}\left(n^{k}\right)$.
9. [10] A ssuming x and y are integer variables, prove correct with respect to precondition " $x \geq 0$ and y is defined" and postcondition " $x+y \neq 11$ ":

if $\mathrm{y}>\mathbf{2}$ then

$x:=y+6$
if $x<10$ then

$$
y:=1
$$

endif
else

$x:=y+4$
 endif

10. a. [10] Prove the following code is partially correct with respect to precondition " $n \geq 0$ " and postcondition " $s=\sum_{i=1}^{n} a_{i} b_{i}$ " (assume k and sare integer variables and a and b are integer arrays of length at least n.):
$\mathrm{k}:=1$
$\mathrm{s}:=0$
while $\mathrm{k} \leq \mathrm{n}$ do
$s:=s+(a[k] * b[k])$
$\mathrm{k}:=\mathrm{k}+1$
endwhile

Be explicit about your loop invariant.

... b. [5] Prove that the loop terminates.
11. a. [10] D etermine the weakest precondition with respect to the postcondition " $w>0$ " for the following (assume $\mathrm{w}, \mathrm{z}, \mathrm{y}$, and x are integer variables and that y and z are defined):

```
x := y
y:= x
x := Z
y:= x
w:= x+y+z
```

b. [5] For the same piece of code, determine the weakest precondition with respect to the postcondition " wy = 12 "
12. [10] D etermine the weakest precondition with respect to the postcondition " $y=1$ " for the following code (assume z, y, and x are integer variables and that x and z are defined):

```
if }x<3\mathrm{ then
    y:= z
    if y<z then
        y:= 2*y
    endif
    else
        y := z-y
    endif
```

