
CS 336 
 

1. The important issue is the logic you used to arrive at your answer. 
2. Use extra paper to determine your solutions then neatly transcribe them onto 
these sheets.  
3. Do not submit the scratch sheets.  However, all of the logic necessary to ob-
tain the solution should be on these sheets. 
4. Comment on all logical flaws and omissions and enclose the 

 
 

1. a. [5] How many strings of length 0n ≥  using characters a, b or c with possible repeti-
tion, have exactly an  as and bn  bs (where a bn n n+ ≤ )?  
 

Into the n  positions of the string, there are 
a

n

n
 
 
 

 selections for the positions of the 

an  as and, given that, a

b

n n

n

− 
 
 

 selections for the positions of the bn  bs.  Once the 

positions for the as and  bs are fixed, the positions for the cs is determined. Thus 

there are a

a b a b

n n n n

n n n n

−    
=    

    
 such strings. 

 
b. [10] How many strings of length 0n ≥  using characters a, b or c with possible repetition, 
have either exactly an  as or exactly bn  bs or both (where a bn n n+ ≤ )?  
 

For the case of exactly an  as, into the n  positions of the string, there are 
a

n

n
 
 
 

 se-

lections for the positions of the an  as and, given that, 2 an n−  selections for the posi-
tions of the bs and cs.  For the case of exactly bn  bs, into the n  positions of the 

string, there are 
b

n

n
 
 
 

 selections for the positions of the bn  bs and, given that, 2 bn n−  

selections for the positions of the as and cs.  From above, we have that there are 

a

a b

n n n

n n

−  
  
  

 strings with exactly an  as and bn  bs, thus there are 

a

a b a b

n n n n n

n n n n

−      
+ −      

      
 strings with exactly an  as or exactly bn  bs or both. 

 
 
 

comments in boxes 



2. [10] For n ≥ 1, how many four-tuples , , ,i j k l  of non-negative values , , ,i j k  and l  
satisfy i j k l n+ + + ≤ ? (Hint: First consider the situation i j k l n+ + + =  and then think 
about ( )m n i j k l= − + + + .) 
 

Consider placing n  indistinguishable balls into five bins labeled , , , ,i j k l  and m . 
Since the number of balls in the m  bin is non-negative, each such placement corre-
sponds to a single selection of a four-tuple , , ,i j k l  of non-negative values , , ,i j k  

and l  satisfying i j k l n+ + + ≤ .  There are 
4

4
n + 

 
 

 such placements of n  indis-

tinguishable balls into five bins, therefore the same number of four-tuples , , ,i j k l  
of non-negative values , , ,i j k  and l  satisfying i j k l n+ + + ≤ . 

 
3. a. [10] Using a combinatorial argument, prove that for n ≥ 1  and 2m ≥ : 

0

( 1)
n

n k n

k

n
m m

k
−

=

 
− = 

 
∑  

 
Consider strings of length n  selected from the integers {1,2,..., }m  with repetition 
allowed.  For each of n  positions there are m  choices, so there are nm  such 
strings.  Alternatively, let k  indicate the number of copies of m  in the string.  The 

value of k  varies from 0  to n .  For a fixed value of k  there are 
n
k

 
 
 

 selections for 

the placement of the m s and then ( 1)m −  choices for the integers {1,2,..., 1}m −  

in each of the n k−  remaining positions. Thus there are ( 1)n kn
m

k
− 

− 
 

 such strings 

with k  copies of m , and 
0
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n k

k

n
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k
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− 

 
∑  overall. This must equal nm .  

 
b. [10] Using a combinatorial argument, prove that for 0n k≥ ≥ : 

!( )! !
n

k n k n
k

 
− = 

 
 

 
Consider permutations of length n  selected from the integers {1,2,..., }n .  There 
are !n  such permutations.  Alternatively, let k  satisfy 0n k≥ ≥  and for any per-

mutation first select the positions to be occupied by {1,2,..., }k . There are 
n
k

 
 
 

 

such selections.  Now permute the values {1,2,..., }k  - there are !k  such permuta-
tions.  Finally, permute the n k−  values { 1, 2,..., }k k n+ + , which can be done in 
( )!n k−  ways, and place them into the positions of the permutation notoccupied by 



the values from {1,2,..., }k .  Thus, there are !( )!
n

k n k
k

 
− 

 
 such permutations and 

this must equal !n .  
 

4. a. [10] For 3 m n≤ ≤ , what is the probability that a string of length m  selected without 
repetition from {1,2,..., }n  contains the substring 1,2,3 ? (You may assume all strings of 
length m  selected without repetition from {1,2,..., }n  are equally probable.) 
 

There are !
( )!

n
n m−

 such equally probable strings. To count the number containing 

the substring 1,2,3 , consider that we first position the substring 1,2,3 .  There 
are 2m −  positions for the initial 1 , so there are 2m −  positions for the substring. 
The remainder of the 3m −  positions of the string consists of characters from 

{4,5,..., }n  of size 3n − .  Thus, there are ( 3)!
( 2)

(( 3) ( 3))!
n

m
n m

−
−

− − −
 strings of 

length m  selected without repetition from {1,2,..., }n  containing the substring 

1,2,3 . The probability of such a string is ( 3)! !
( 2) /

( )! ( )!
n n

m
n m n m

−
−

− −
. (This value 

equals 2
( 1)( 2)

m
n n n

−
− −

 and an alternative argument results in this expression di-

rectly.)  
 
5. [10] Using definition 2' (and no cardinality theorems) show that the set of reciprocals of 
positive integers (i.e., {1/ | 0}p p p∈ ∧ >¢ ) is infinite. 
 

Consider the mapping :{1/ | 0} {1/ | 0}f p p p p p p∈ ∧ > → ∈ ∧ >¢ ¢ , defined by 
1 1

( )
1

f
p p

=
+

, for p ∈¢  and 0p > . Since for 
1 2

1 1
p p

≠ , 1 2p p≠  then 

1 21 1p p+ ≠ +  and 1 2
1 2

1 1
( ) ( )f p f p

p p
= ≠ = . The mapping is one-to-one. Lastly 

1
1 {1/ | 0}

1
p p p= ∈ ∈ ∧ >¢  but if 1 1

( ) 1
1

f
p p

= =
+

 then 0p = , but 

0 {1/ | 0}p p p∉ ∈ ∧ >¢ , so no value exists such that 1
( ) 1f

p
=  and f  maps into a 

strict subset of {1/ | 0}p p p∈ ∧ >¢ .  Therefore by Definition 2’ 
{1/ | 0}p p p∈ ∧ >¢  is infinite. 

 
6. a. [10] Let { , , ,..., , , , ,..., }A a b c z A B C Z=  and and let B  be the set of finite strings from 
A , that is 1 2{ , ,... | 1,2,..., }n iB n A fori nα α α α= ∈ ∧ ∈ =¥ . Is the set B  finite, countably 
infinite, or uncountably infinite?  Prove your claim.  



 
B  is countably infinite.  For n ∈¥  define nB  to be the strings from A  of length 

exactly n  (i.e. 1 2{ , ,... | 1,2,..., }n n iB A fori nα α α α= ∈ = ). The cardinality of nB  is 

52n  and thus nB  is finite.  However n
n

B B
∈

=
¥

∪  thus by Theorem  B  is countable.  

B  contains the subset { , , ,...}a aa  (i.e. the set of strings of a s of length n  
for every n ∈¥ ). This set is infinite, thus by Theorem  B  is infinite.  We conclude 
B  is countably infinite 

 
   b. [5] Prove that the set of finite sets of real values from [0,1]  

1 2{{ , ,..., } | [0,1] 1,2,..., }n iC x x x n x fori n= ∈ ∧ ∈ =¥ is uncountably infinite. 
 

Consider the mapping :[0,1]f C→  defined by ( ) { }f x x= .  Since for 1 2x x≠ ,  

1 1 2 2( ) { } { } ( )f x x x f x= ≠ = . The mapping is one-to-one.  By Theorem 11, C is un-
countably infinite. 

 
7. [10] Prove that if 1 1( )f g= Ο  and 2 2( )f gο= , then 1 2 1 2( )f f g gο= . 
 

There exist M  and 1N  so that for 1 1 1,| ( ) | | ( ) |n N f n M g n≥ ≤ .  Given 0,ε >  there 

exists 2N  so that for 2 2 2,| ( ) | | ( ) |n N f n g n
M
ε

≥ ≤ , thus for 

1 2 1 2 1 2 1 2max{ , },| ( ) ( ) | | ( ) | | ( ) | | ( ) ( ) |n N N f n f n M g n g n g n g n
M
ε

ε≥ ≤ = , so 

1 2 1 2( )f f g gο= .   
 

8. [10] . For a fixed value of k , define ( )
n

f n
k

 
=  

 
. Prove that ( ) ( )kf n n= Ο  

 

For n k≥ , 1 1 1
| ( ) | ( 1) ( 1) | |

! ! !
k kn

f n n n n k n n
k k k k

 
= = ⋅ − − + ≤ = 

 
L , so 

( ) ( )kf n n= Ο . 
 
9. [10] Assuming x  and y  are integer variables, prove correct with respect to precondition 
“ 0x ≥  and y  is defined” and postcondition “ 11x y+ ≠ ”: 
 
if y > 2 then  
 x := y+6 

if x < 10 then 
  y : = 1 
 endif 
else 



 x := y+4 
endif 
 
10. a. [10] Prove the following code is partially correct with respect to precondition 

“ 0n ≥ ” and postcondition “
1

n

i i
i

s a b
=

= ∑ ” (assume k and s are integer variables and a and b 

are integer arrays of length at least n.): 
 

k := 1 
s := 0 
while k ≤ n do 
 s := s + (a[k]*b[k]) 
 k := k+1 
endwhile 

 
Be explicit about your loop invariant.  
 
 
 
 
 
 
 
 
 
 
 
…b. [5] Prove that the loop terminates. 
 
 
11. a. [10] Determine the weakest precondition with respect to the postcondition “ 0w > ” 
for the following (assume w, z, y, and x are integer variables and that y and z are defined): 
 
x := y 
y := x 
x := z 
y := x 
w := x+y+z 
 
 
 
 
 
 
b. [5] For the same piece of code, determine the weakest precondition with respect to the 
postcondition “ 12wy = ”  
 



12. [10] Determine the weakest precondition with respect to the postcondition “ 1y = ” for 
the following code (assume z, y, and x are integer variables and that x and z are defined): 
 

if x<3 then 
 y := z 
 if y<z then 
  y := 2*y 
 endif 
else 
 y := z-y 
endif 


