
CS 336 
 

1. The important issue is the logic you used to arrive at your answer. 
2. Use extra paper to determine your solutions then neatly transcribe them onto 
these sheets.  
3. Do not submit the scratch sheets.  However, all of the logic necessary to obtain 
the solution should be on these sheets. 
4. Comment on all logical flaws and omissions and enclose the 

 
 

1. [10] Let A and B be non-empty sets with cardinalities m and n, respectively. How many 
functions from A to B are not one-to-one? (You may assume m n≤ .)  
 

For each of the m  elements of A  there are n  choices for the value of the function 
so there are mn  functions from A to B .  To count the one-to-one  functions, we 
notice that there are There are n  choices for the value of the function for the first 
element of A, 1n −  choices for the value of the function for the first element of A, 
…, and 1n m− +  choices for the value of the function for the mth element of A. 

Thus, there are 
!

( )!
n

n m−
 one-to-one functions from A to B.  There are 

!
( )!

m nn
n m

−
−

 functions from A to B that are not one-to-one. 

 
 
2. Consider choosing k  objects from a set { }a a an1 2, ,...,  of n  objects with order unim-
portant but repetition allowed. 
 
a.  [5] How many such selections have exactly one a1  ? 
 

We need to determine how many ways we have of choosing 1k −  objects from a set 
of the set { }2 ,..., na a  of 1n −  objects with order unimportant but repetition al-

lowed. This is equivalent to placing 1k −  balls in 1n −  bins and there are 
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ways of doing it.  
 

comments in boxes 



[5] How many such selections have at least a1  ? 
 

Since the total number of ways of choosing k  objects from a set { }a a an1 2, ,...,  of 

n  objects with order unimportant but repetition allowed is 
1n k

k
+ − 

 
 

 and there 

are 
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 ways of choosing k  objects from the set 

{ }2 ,..., na a  of n  objects with order unimportant but repetition allowed, there are 

1 2n k n k
k k

+ − + −   
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 such selections having at least one a1 . Alternatively, you 

could see this as choosing a1  once then choosing 1k −  objects from the set 

{ }1 2, ,..., na a a  . This way you get 
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3. a. [10] Using a combinatorial argument, prove that for 1n ≥ : 
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We seek to determine how many strings of length n  there are consisting of ele-
ments of { , , }a b c  allowing repetition. Since there are three choices for each of the 

n  positions there are 3n  such strings.  Alternatively, let k  denote the number of 
positions in the string occupied by a  or b .  The value of k  varies from 0  to n .  

For a fixed value of k , there are 
n
k
 
 
 

 ways to select these positions and then 2 op-

tions for each of the k  positions, thus 2k
n
k
 
 
 

 for the fixed value of k  and 
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∑  overall. This must equal3 .n  

 



b. [10] Using a combinatorial argument, prove that for , , 1m n p ≥ : 
m n p n p m n p m n
m n p n

+ + + + + +     
=     

     
. 

 
 

Given a set S  of cardinality ,m n p+ +  consider how many partitions there are of 
S  into disjoint subsets , ,A B  and C  of cardinalities , ,m n  and ,p  respectively. 
For the left side of the equality, we count this by first selecting the m  elements for 

the subset A  in 
m n p
m

+ + 
 
 

 ways and then selecting the n  elements for the sub-

set B  from the remainder in 
n p
n
+ 

 
 

 ways.  The remaining elements form the 

subset .C  For the right side of the equality, we count this by first selecting the p  

elements for the subset C  in 
m n p

p
+ + 

 
 

 ways and then selecting the n  elements 

for the subset B  from the remainder in 
m n
n
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 ways.  The remaining elements 

form the subset .A  The two must be equal so  
m n p n p m n p m n
m n p n

+ + + + + +     
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4.  a. [5] Suppose k  objects are being chosen from a set { }a a an1 2, ,...,  of n  objects with 
order unimportant and repetition not allowed. Suppose all such selections are equally 
likely. What is the probability that a selection contains exactly two of 1 2 3{ , , }a a a ? (You 
may assume 1 3.n k≥ + ≥ ) 
 
 

There are 
n
k
 
 
 

 equally likely selections of k  objects  from n  objects with order 

unimportant and repetition not allowed. If exactly two of 1 2 3{ , , }a a a  are chosen 

there are 
3
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 ways to select the two from 1 2 3{ , , }a a a  and then 
3
2

n
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 − 
 ways to 

choose the remaining 2k −  from the 3n −  elements { }4 5, ,..., na a a . So there are 

3 3
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 selections containing exactly two of 1 2 3{ , , }a a a  and the probability of 

such a selection is 
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b. [5] Now suppose k  objects are being chosen from a set { }a a an1 2, ,...,  of n  objects 
with order important and repetition still not allowed. Suppose all such selections are 
equally likely. What is the probability that a selection contains exactly two of 1 2 3{ , , }a a a ? 
 

There are 
!

( )!
n
n k−

 equally likely selections of k  objects  from n  objects with order 

important and repetition not allowed. If exactly two of 1 2 3{ , , }a a a  are chosen there 

are 
3
2
 
 
 

 ways to select the two from 1 2 3{ , , }a a a  and then 
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 − 
 ways to choose 

the remaining 2k −  from the 3n −  elements { }4 5, ,..., na a a . Then there are !k  

ways to permute the elements selected. Thus,  there are 
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 selections 

containing exactly two of 1 2 3{ , , }a a a  and the probability of such a selection is 
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. (Alternatively, we could recognize that this is the same as part a. 

since, if orser is imposed, there are !k  ways of permuting the selections with ex-
actly two of 1 2 3{ , , }a a a  but also !k  ways of permuting all of the selections. ) 



 
5. [10] Using Definition 2’ but no cardinality theorems, prove that the set 

 { 0 1 1 }P infinitely long stringsof s and swith exactly two s=  
is infinite. 
 
 

Consider the function →:f P P  defined by ( ) 0 ||f s s=  for any string 
s P∈ (where ||  denotes concatenation). Notice that if s  has exactly two 1s, then so 
will ( ).f s  The function f  is one-to-one since if ∈,s t P  and ≠ ,s t  then 

( ) 0 || 0 || ( ).f s s t f t= ≠ =  Lastly, notice that since no string maps to 
110000...< > , f  maps P  into a proper subset of .P  We conclude that P  is infi-

nite.  
 
6. [10]  Let A  be a countably infinite set , B  be an uncountably infinite set nonempty set 
and C A B= × . Is the C  finite, countably infinite, or uncountably infinite?  Prove your 
assertion. 
  

The set C  is uncountably infinite.  Since A  is countably infinite, it is non-empty . 
Let a  be any element of A . Consider the function :f B C→  defined as 

( ) ( , ).f b a b=  The function f  is one-to-one since if ∈1 2,b b B  and ≠1 2 ,b b  then 

1 1 2 2( ) ( , ) ( , ) ( ).f b a b a b f b= ≠ =  By Theorem 11, C  is uncountably infinite. 
 
7. [10] Given that for 1n ≥  and 0,(1 ) 1 ,n nα α α> + ≥ +   prove that ⋅ = Ο2 (3 )n nn  . 
 

Let 
1
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M =  and 1.N =  For 1,n ≥  = + ≥ + ≥
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 Thus, for 1,n ≥  

⋅ ≥ ⋅2 3 2 .n nn  So then for , | 2 | 2 2 3 | 3 | .n n n nn N n n M≥ ⋅ = ⋅ ≤ ⋅ =  
 
8.  [10] Prove that if 1 1( )f g=Ο  and 2 2( )f gο= , then 1 2 1 2( )f f g gο= . 
 

Since  1 1( )f g=Ο , there exist M  and 1N  so that for 1 1 1,| ( ) | | ( ) |n N f n M g n≥ ≤ .  

Since 2 2( )f gο= , given 0ε >  then also 0
M
ε

>  and there exists 2N  so that for 

2 2 2,| ( ) | | ( ) |n N f n g n
M
ε

≥ ≤ , thus for 

1 2 1 2 1 2 1 2max{ , },| ( ) ( ) | | ( ) | | ( ) | | ( ) ( ) |n N N f n f n M g n g n g n g n
M
ε ε≥ ≤ = , so 

1 2 1 2( )f f g gο= .   
 

 



9. [10] Assuming x  and y  are integer variables, prove correct with respect to precondition 
“ y  is defined” and postcondition “ 0x > ”: 
 

if y > 0 then  
 x := 2*y 

if x > 5 then 
  x : = x-4 
 endif 
else 
 x := 4-y 

y := y-1  
if y = -3 then 

  x : = x-3 
 endif 
endif 
 
__________________________y is defined  
if y > 0 then _____________ 0y >  
 x := 2*y ____________ 0 2y x y> ∧ =  
    ____________ 0x >  

if x > 5 then_______ 11x >  
  x : = x-4_____ ( ' 5) ( ' 4)x x x> ∧ = −  
    ____________ 1x >  
 endif ______________ ( 0) ( 1)x x> ∨ >  
    ____________ 0x >  
else _____________________ 0y ≤  
 x := 4-y____________ ( 0) ( 4 )y x y≤ ∧ = −  
    ____________ 3x >  

y := y-1 ____________ 3x >  
if y = -3 then________ 3x >  

  x : = x-3______ ( ' 3) ( ' 3)x x x> ∧ = −  
    ____________ 0x >  
 endif______________ ( 3) ( 0)x x> ∨ >  
    ____________ 0x >  
endif____________________ ( 0) ( 0)x x> ∨ >  
_________________________ 0x >  

 



10. [10] Prove the following code is partially correct with respect to precondition “true” 
and postcondition “k is even” . (Assume k, n, and i are integer variables and that n and i 
are defined at input.) 
 

k := 1234 
while i ≤= n do 

if i ≥  7 then 
  k : = k-12 
 else 
  k := 4*k-6 
 endif 
 i := i+5 
endwhile 

 
Be explicit about your loop invariant: I = “k is even” 
 

__________________________ true 
k := 1234__________________ = 1234k  
__________________________ k is even 
while i ≤= n do____________ ( ) ( )i n∧ ≤k is even  

   ____________ k is even 
if i ≥  7 then________ ( ) ( 7)i∧ ≥k is even  

  ____________ k is even 
  k : = k-12____ ( ) ( ' 12)k k∧ = −k' is even  
  ____________ k is even 

else _____________ ( ) ( 7)i∧ <k is even  
  ____________ k is even  

k := 4*k-6____ ( ) ( 4 ' 6)k k∧ = −k' is even  
____________ k is even 

 endif   ____________ ( ) ( )∨k is even k is even  
____________ k is even 

i := i+5____________ ( ) ( ' 5)i i∧ = +k is even  
____________ k is even 

endwhile________________ ( ) ( )i n∧ >k is even  
________________________ k is even 



11. [10] Prove that the code below terminates. (Assume s and i are integer variables.): 
 

s := 0 
i := 1 
while i ≤= 100000 do 
 s := s+i 
 i := 4*i+2 
endwhile 

 
First we recognize that if the quantity 100,000-i  becomes negative, the loop will 
terminate. We will show that that quantity strictly decreases but to that end we 
need to guarantee that the variable i stays positive. Consider the invariant “ 1i ≥ ”: 
 
s := 0 
i := 1____________________ 1i ≥  
while i ≤= 100000 do_____ 1i ≥  
 s := s+i ____________ 1i ≥  
 i := 4*i+2___________ ( ' 1) ( 4 ' 2)i i i≥ ∧ = +  

_____________ ' 3 ' 2 ' 1i i i i= + + > ≥  
_____________ ( 1) (100000 100000 ')i i i≥ ∧ − < −  
_____________ 1i ≥  

endwhile 
 
The quantity 100,000-i  strictly decreases through the loop. Since this is an integer 
expression, eventually 100,000-i  becomes negative and the loop terminates. 

 
12. [10] Determine the weakest precondition with respect to the postcondition “ 0S = ” for 
the following (assume S, y, and x are integer variables and y and x are defined 
 

if x≠ 0 then 
  x := y 
 S := x-y 
else 
 S := y+x 
endif 

 
 

(wp if x≠ 0 then x := y; S := x-y else S := y+x endif, 0)S =  
 = (( 0) (x wp≠ ∧ x := y; S := x-y, 0)) (( 0) (S x wp= ∨ = ∧ S := y+x, 0)S = ) 
= (( 0) (x wp≠ ∧ x := y; 0)) (( 0) ( 0))x y x y x− = ∨ = ∧ + =  
= (( 0) ( 0)) ( 0))x y y x y≠ ∧ − = ∨ = =  
= ( 0) ( 0))x x y≠ ∨ = =  

 



13. [10] Determine the weakest precondition with respect to the postcondition “ x y≠ ” 
for the following (assume y and x are integer variables and x is defined).  Simplify your 
answer so that there are NO logical operators. 

 
if x ≥ 3  then 
 y:= 2 
else 
 if x = 2  then 
  y := 6 
 else 
  y := x+1 

endif 
endif 

 
We consider the inner if-then-else first: 
 
wp (if x = 2  then y := 6 else y := x+1 endif, x y≠ )  
 = (( 2) (x wp= ∧ y := 6, )) (( 2) (x y x wp≠ ∨ ≠ ∧  y := x+1, ))x y≠  
 = (( 2) ( 6)) (( 2) ( 1))x x x x x= ∧ ≠ ∨ ≠ ∧ ≠ +  
 = ( ( 2) ( 2)x x= ∨ ≠  
 = true 
 
Now, letting S  denote “if x = 2  then y := 6 else y := x+1 endif”, 
 
wp (if x ≥ 3  then y:= 2 else S  endif, x y≠ )  
 = (( 3) (x wp≥ ∧ y := 2, )) (( 3) (x y x wp≠ ∨ < ∧ S , ))x y≠  
 = (( 3) ( 2)) (( 3) )x x x true≥ ∧ ≠ ∨ < ∧  
 = ( ( 3) ( 3)x x≥ ∨ <  
 = true 
 
So, wp (if x ≥ 3  then y:= 2 else if x = 2  then y := 6 else y := x+1 endif 
endif, x y≠ ) = true . 


