
Format for Program Verification using Hoare Axioms

I believe the easiest way to employ these axioms is to add lines of assertions to the actual code. We
might think of these as comments (and one programming language – ADA – actually had the inten-
tion at one point of developing compilers that could use the comments to do mechanical verification
on the code). Thus the general form will be:

 <line of code>
 ____________________________________<one or more lines of assertions>

In my solutions I will always make it clear what is code and what is assertion by the hosrizontal lines
– one per assertion.

To get an idea how this works, let’s do an example verification.

Problem: Assuming x and y are integer variables, prove correct this code is correct with respect to
precondition “ y is defined” and postcondition “ 1x ≥ ”:

if y > 0 then
 x := y+6

if x > 11 then
 x : = x-10
 endif
else
 x := 4-y

y := y-1
if y = -3 then

 x : = x-3
 endif
endif

__________________________y is defined
if y > 0 then _____________ 0y >

 x := y+6____________ 0 6y x y> ∧ = +

 ____________ 6x >
if x > 11 then_______ 11x >

 x : = x-10_____ (' 11) (' 10)x x x> ∧ = −

 ____________ 1x >
 endif ______________ (6) (1)x x> ∨ >

 ____________ 1x >
else _____________________ 0y ≤

 x := 4-y____________ (0) (4)y x y≤ ∧ = −

 ____________ 4x ≥
y := y-1 ____________ 4x ≥
if y = -3 then________ 4x ≥

 x : = x-3______ (' 4) (' 3)x x x≥ ∧ = −

 ____________ 1x ≥
 endif______________ (4) (1)x x≥ ∨ ≥

 ____________ 1x ≥
endif____________________ (1) (1)x x> ∨ ≥

_________________________ 1x ≥

Remarks:

1. Notice the precondition is the first assertion and the postcondition is the last one.

2. Sometimes a line of code may be followed by more than one assertion line. For example:

 x := y+6____________ 0 6y x y> ∧ = +
 ____________ 6x >

This is fine as long as the successive assertions are consequences of the ones immediately
preceding. Sometimes students are tempted to bring back assertions that don’t occur on the
immediately preceding lines. They see this as a sort of shorthand but it is very dangerous be-
cause, if assumptions need not be explicit, we have little idea of what actually is being
claimed at each line. Thus, we don’t want this sort of treatment:

 x := 6____________ 6x =
y := 2____________ 2y =

 ____________ 6 2x y= ∧ =
Since the assertion about x has been dropped but then reintroduced. This is the correct
treatment:

 x := 6____________ 6x =
y := 2____________ 6 2x y= ∧ =

3. Not inconsistent with what was just said, recognize that the interpretation of “immediately
preceding assertion” takes into consideration that the flow of control may actually skip some
lines of code. This will happen with conditionals and loops. Thus, the fragment above

 __________________ 6x >
if x > 11 then_______ 11x >

 x : = x-10_____ (' 11) (' 10)x x x> ∧ = −
 ____________ 1x >
 endif ______________ (6) (1)x x> ∨ >

is fine. We know that the assertion “ 6x > ” is true prior to the if and thus will continue to
be true in the case that the if condition “x > 11” is not satisfied. That is why we are able to
assert “(6) (1)x x> ∨ > ” at the end of the conditional:

 either
“ 6x > ” holds because the if condition was false prior to the conditional

or
“ 1x > ” holds because the if condition was true.

Don’t think of this as reintroducing an unstated assertion as was covered in Remark 2.

