3. b. Present a combinatorial argument that for all positive integers n ::

$$
\binom{2 n}{n}=2\binom{n}{2}+n^{2}
$$

Consider two distinct sets A and B each of size n. Since they are distinct, the cardinality of $A \cup B$ is $2 n$. The number of ways of choosing a pair of elements from $A \cup B$ is $\binom{2 n}{2}$. Alternatively, recognize that to get such a pair of elements from $A \cup B$, one might choose both from A, both from B, or one from each. If both come from A, there are $\binom{n}{2}$ possibilities. We get the same number if both elements come from B. Finally if one element comes from each of A and B, then there are n^{2} possibilities. The total is $2\binom{n}{2}+n^{2}$ and this must equal $\binom{2 n}{2}$.
4. Using a combinatorial argument, prove that for $n \geq 1$:

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Let A and B be disjoint sets of cardinality n each and $C=A \cup B$. How many subsets of C are there of cardinality n. We are selecting elements for such a subset without repletion not with concern for order so there are $\binom{2 n}{n}$ such subsets. Alternatively, let k represent the number of elements in such a subset that were selected from A. The value of k may vary from 0 to n. There are $\binom{n}{k}$ such selections of the k elements from A. Now select which k elements from B will not be in the subset (the k that remain will thus be in the subset). There are $\binom{n}{k}$ of selecting these so $\binom{n}{k}^{2}$ ways of selecting the subset and $\sum_{k=0}^{n}\binom{n}{k}^{2}$ ways overall. This must equal $\binom{2 n}{n}$.
7. a. Present a combinatorial argument that for all $n \geq 1$:

$$
\sum_{k=0}^{n}\binom{n}{k} 2^{k}=3^{n}
$$

Let $A=\{a, b, c\}$ and consider all strings of length n using elements of A. Since there are three options for each component of the string, there are 3^{n} such strings. Alternatively, consider first consider the positions of any c^{\prime} 's in the string. Let k
represent the number of non-c's (i.e., a 's and b 's) in the string. Clearly k could range from 0 through n. For a fixed value of k, there are $\binom{n}{k}$ ways to choose the positions for the non- c 's. Then for each of the k positions, there are two options (i.e., a or b) for the character in the position. The remaining $n-k$ positions must be occupied by c 's. Thus there are $\binom{n}{k} 2^{k}$ ways to assign elements to the positions with k non-c's. The total is $\sum_{k=0}^{n}\binom{n}{k} 2^{k}$ and this must equal 3^{n}
b. Present a combinatorial argument that for all nonnegative integers p, s, and n satisfying $p+s \leq n$

$$
\binom{n}{p}\binom{n-p}{s}=\binom{n}{p+s}\binom{p+s}{p}
$$

(Hint: Consider choosing two subsets.)
Let a set A have n elements and consider how many ways there are to select disjoint subsets B and C of A so that B has p elements and C has s elements. First we could select the p elements for B in $\binom{n}{p}$ ways and then select the s elements for C from the remaining $n-p$ elements of $A \sim B$ in $\binom{n-p}{s}$ ways. Together this yields $\binom{n}{p}\binom{n-p}{s}$ such selections. Alternatively, we could first select the $p+s$ elements for $B \cup C$ in $\binom{n}{p+s}$ ways and then select the p elements for B from $B \cup C$ in $\binom{p+s}{p}$ ways. There are thus $\binom{n}{p+s}\binom{p+s}{p}$ such selections and this must equal $\binom{n}{p}\binom{n-p}{s}$
8. a. Present a combinatorial argument that for all $n \geq 1$:

$$
\sum_{k=1}^{n}\binom{n}{k}=2^{n}-1
$$

(Note: The summation begins with $k=1$.)
Consider the cardinality of the set of non-empty subsets of a set A of n elements. For each element of A, there are two options: either be present in a subset or not. Thus there are 2^{n} total subsets but one of these is empty so there are $2^{n}-1$ non-
empty subsets of A. Alternatively, let k indicate the cardinality of the subset. Since we are counting non-empty subsets, k ranges from 1 to n. For a fixed value of k, there are $\binom{n}{k}$ ways of selecting the k subset elements from the n total elements of A. Adding this to include all possible cases of k , we obtain $\sum_{k=1}^{n}\binom{n}{k}$ and this must equal $2^{n}-1$.
b. Present a combinatorial argument that for all integers k and n satisfying $3 \leq k \leq n$

$$
\binom{n}{k}=\binom{n-3}{k}+3\binom{n-3}{k-1}+3\binom{n-3}{k-2}+\binom{n-3}{k-3}
$$

(Hint: Consider three special elements.)
Consider the number of subsets of size k of a set B of cardinality n. Since $n \geq 3$, we may select three elements b_{1}, b_{2}, b_{3} of B and let $\mathrm{C}=\mathrm{B} \sim\left\{b_{1}, b_{2}, b_{3}\right\}$. Thus C has cardinality $\mathrm{n}-3$ and $\mathrm{B}=\mathrm{C} \cup\left\{b_{1}, b_{2}, b_{3}\right\}$. We know there are $\binom{n}{k}$ such subsets. Alternatively, to select k elements of B for a subset there are four options: all k come from C , $k-1$ come from C and the k th is either b_{1}, b_{2}, or b_{3}, k-2come from C and the $\mathrm{k}-1$ st and k th are exactly two of b_{1}, b_{2}, or b_{3}, or k - 3 come from C and all of b_{1}, b_{2}, and b_{3} are present. For the first option, there are $\binom{n-3}{k}$ possibilities since all k come from C. For the second option, there are $3\binom{n-3}{k-1}$ possibilities, since k-1 elements are selected from C and one from the three of b_{1}, b_{2}, or b_{3}. For the third option, there are $3\binom{n-3}{k-2}$ possibilities, since k-2 elements are selected from C and one from the three of b_{1}, b_{2}, or b_{3} is not selected. Lastly, if $k-3$ come from C and all of b_{1}, b_{2}, and b_{3} are present, then there are $\binom{n-3}{k-3}$ options. The total is $\binom{n-3}{k}+3\binom{n-3}{k-1}+3\binom{n-3}{k-2}+\binom{n-3}{k-3}$ and this must equal $\binom{n}{k}$
9. Present a combinatorial argument that for all positive integers m, n, and r, satisfying $r \leq \min \{m, n\}$:

$$
\binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{k}\binom{n}{r-k} .
$$

(Hint: Consider selecting from two sets.)
Let A and B be disjoint sets of cardinalities m and n, respectively. Let $C=A \cup B$ and consider the number of subsets of C of cardinality r. Since $|C|=|A|+\mid B)=m+n$, there are $\binom{m+n}{r}$ such subsets. Alternatively let k be the number of elements in a subset that came from A. The value of k can range from

0 to r. For a fixed value of k, there are $\binom{m}{k}$ ways to select the k elements from A and $\binom{n}{r-k}$ ways to select the remaining $r-k$ elements from B, thus $\sum_{k=0}^{r}\binom{m}{k}\binom{n}{r-k}$ total ways. This must equal $\binom{m+n}{r}$.

