1. Given floating point numbers a, b, and c such that botha +b and $\mathbb{f}(\mathrm{a}+\mathrm{b})+\mathrm{c}$ are in range then there exist real numbers \bar{a}, \bar{b}, and \bar{c} so that $f l((a+b)+c)=(\bar{a}+\bar{b})+\bar{c}$, where for some $\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}$, and ε_{c} satisfying $\left|\varepsilon_{a} \leqslant 2 \varepsilon_{0}+\mathrm{O}\left(\varepsilon_{0}^{2}\right),\right| \varepsilon_{b} \leqslant 2 \varepsilon_{0}+\mathrm{O}\left(\varepsilon_{0}^{2}\right)$, and $\mid \varepsilon_{c} \leqslant \varepsilon_{0}$, we have $\bar{a}=a\left(1+\varepsilon_{a}\right), \bar{b}=b\left(1+\varepsilon_{b}\right)$, and $\bar{c}=c\left(1+\varepsilon_{c}\right)$.
2. Given floating point numbers a, b, c, and d such that $\mathrm{a} \cdot \mathrm{b}, \mathrm{c} / \mathrm{d}$ and $\mathbb{f}(\mathrm{a} \cdot \mathrm{b})+\mathbb{f}(\mathrm{c} / \mathrm{d})$ are in range then there exist real numbers $\bar{a}, \bar{b}, \bar{c}$ and \bar{d} so that $f l(a \cdot b+c / d)=\bar{a} \cdot \bar{b}+\bar{c} / \bar{d}$, where for some $\varepsilon_{\mathrm{a}}, \varepsilon_{b}, \varepsilon_{\mathrm{c}}$, and ε_{d} satisfying $\left|\varepsilon_{a} \leqslant 2 \varepsilon_{0}+\mathrm{O}\left(\varepsilon_{0}^{2}\right),\left|\varepsilon_{b} \leqslant 2 \varepsilon_{0}+\mathrm{O}\left(\varepsilon_{0}^{2}\right),\right| \varepsilon_{c} \leqslant 2 \varepsilon_{0}+\mathrm{O}\left(\varepsilon_{0}^{2}\right)\right.$, and $| \varepsilon_{d} \leqslant 2 \varepsilon_{0}+\mathrm{O}\left(\varepsilon_{0}^{2}\right)$, we have $\bar{a}=a\left(1+\varepsilon_{a}\right), \bar{b}=b\left(1+\varepsilon_{b}\right), \bar{c}=c\left(1+\varepsilon_{c}\right)$, and $\bar{d}=d\left(1+\varepsilon_{d}\right)$.
